81
Views
67
CrossRef citations to date
0
Altmetric
Research Article

Minireview: Signal Transduction by G Proteins: 1994 Edition

&
Pages 213-252 | Published online: 26 Sep 2008

References

  • Bimbaumer L. Transduction of receptor signal into modulation of effector activity by G proteins: the first 20 years or so.…. Faseb J. 1990; 4: 3178–3188
  • Iyengar R., Bimbaumer L. Hormone receptor modulate the regulatory component of adenylyl cyclases by reducing its requirement for Mg2+ ion and enhancing its extent of activation by guanine nucleotides. Proc. Natl. Acad. Sci. USA 1982; 79: 5179–5183
  • Higashijima T., Ferguson K. M., Stemweis P. C., Smigel M. D., Gilman A. G. Effects of Mg2+ and the beta-gamma subunit complex on the interactions of guanine nucleotides with G proteins. J. Biol. Chem. 1987a; 262: 762–766
  • Casey P. J., Gilman A. G. G protein involvement in receptor-effector coupling. J. Biol. Chem. 1988; 263: 2577–2580
  • Graziano M. P., Freissmuth M., Gilman A. G. Expression of Gsα in Escherichia coli. Purification and properties of two forms of the protein. J. Biol. Chem. 1989; 264: 409–418
  • Lee E., Taussig R., Gilman A. G. The G226AA mutant of Gsα highlights the requirement for dissociation of G protein subunits. J. Biol. Chem. 1992; 267: 1212–1218
  • Rodbell M., Krans H. M.J., Pohl S. L., Bimbaumer L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. Iv. Binding of glucagon: effect of guanyl nucleotides. J. Biol. Chem. 1971; 246: 1872–1876
  • Maguire M. E., Van Arsdale P. M., Gilman A. G. An agonist-specific effect of guanine nucleotides on binding to the beta adrenergic receptor. Mol. Pharmacol. 1976; 12: 335–339
  • Lefkowitz R. J., Mullikan D., Caron M. G. Regulation of β-adrenergic receptors by guanyl-5′-yl imidodiphosphate and other purine nucleotides. J. Biol. Chem. 1976; 251: 4686–4692
  • Berrie C. P., Birdsall N. J.M., Burgen A. S.V., Hulme E. C. Guanine nucleotides modulate muscarinic receptor binding in the heart. Biochem. Biophys. Res. Comm. 1979; 87: 1000–1005
  • Rosenberger L. B., Roeske W. R., Yamamura H. I. The regulation of muscarinic cholinergic receptors by guanine nucleotides in cardiac tissue. Europ. J. Pharmacol. 1979; 56: 179–180
  • Wieland T., Hunzan M., Jakobs K. H. Stimulation and inhibition of human platelet adenylcyclase by thiophosphorylated transducin βγ-subunits. J. Biol. Chem. 1992; 267: 20791–20797
  • Wieland T., Numbarg B., Ulibarr I., Kaldenberg-Stasch S., Schultz G., Jakobs K. H. Guanine nucleotide-specific phosphate transfer by guanine nucleotide-binding regulatory protein β subunits. Characterization of the phosphorylated amino acid. J. Biol. Chem. 1993; 268: 18111–18118
  • Mumby S. M., Heukeroth R. O., Gordon J. E., Gilman A. G. G-protein α-subunit expression. myristoylation, and membrane association in COS cells. Proc. Natl. Acad. Sci. USA 1990; 87: 728–723
  • Jones R. L.Z., Simonds W. F., Merendino J. J., Jr., Brann M. R., Spiegel A. M. Myristoylation of an inhibitory GTP-binding protein α subunit is essential for its membrane attachment. Proc. Natl. Acad. Sci. USA 1990; 87: 568–572
  • Taussig R., Iñiguez-Lluhi J. A., Gilman A. G. Inhibition of adenylyl cyclase by Giα. Science 1993; 261: 218–221
  • Linder M. E., Pang I. H., Duronio R. J., Gordon J. I., Stemweis P. C., Gilman A. G. Lipid modification of G protein subunits. Myristoylation of Goα increases its affinity for βγ. J. Biol. Chem. 1991; 266: 4654–4649
  • Linder M. E., Middleton P., Hepler J. R., Taussig R., Gilman A. G., Mumby S. M. Lipid modifications of G proteins: α subunits are palmitoylated. Proc. Natl. Acad. Sci. USA 1993; 90: 3675–3679
  • Parenti M., Vigano M. A., Newman C. M.H., Milligan G., Magee A. I. A novel n-terminal motif for palmitoylation of G-protein α subunits. Biochem. J. 1993; 291: 349–353
  • Wedegaertner P. B., Chu D. H., Wilson P. T., Levis M. J., Boume H. R. Palmitoylation is required for signaling function and membrane attachment of Gqα and Gsα J. Biol. Chem. 1993; 268: 25001–25008
  • Degtyarev M. Y., Speigel A. M., Jones T. L.Z. Increased palmitoylation of the Gs protein α subunit after activation by the β-adrenergic receptor or cholera toxin. J. Biol. Chem. 1993; 268: 23769–23772
  • Mumby S. M., Casey P. J., Gilman A. G., Gutowski S., Stemweis P. C. G protein γ subunits contain a 20-carbon isoprenoid. Proc. Natl. Acad. Sci. USA 1990; 87: 5873–5877
  • Simonds W. F., Butrynski J. E., Gautam N., Unsion C. G., Spiegel A. M. G-protein βγ dimers. Membrane targeting requires subunit co-expression and intact γ CAAX domain. J. Biol. Chem. 1991; 266: 5363–5366
  • Sanford J., Codina J., Birnbaumer L. γ-subunits of G proteins, but not their α- or β-subunits, are polyisoprenylated. Studies on post-translational modifications using in vitro translation with rabbit reticulocyte lysates. J. Biol. Chem. 1991; 266: 9570–9579
  • Iñiguez-Lluhi J. A., Simon M. I., Robishaw J. D., Gilman A. G. G protein βγ subunits synthesized in Sf9 cells. Functional characterization and the significance of prenylation of γ J. Biol. Chem. 1992; 267: 23409–23417
  • Conklin B. R., Boume H. R. Structural elements of Gα subunits that interact with Gβγ. receptors, and effectors. Cell 1993; 73: 631–641
  • Noel J. P, Hamm H. E., Sigler P. B. The 2.2 Å crystal structure of transducin α-GTPγS. Nature 1993; 366: 654–663
  • Ui M. Islet-activating protein. pertussis toxin: a probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. Trends Pharmacol. Sci. 1984; 5: 277–279
  • Conklin B. R., Farfel Z., Lustig K. D., Julius D., Bourne H. R. Substitution of three amino acids switches receptor specificity. Nature 1993; 363: 274–276
  • Dratz E. A., Furstenau J. E., Lanbert C. G., Thireault D. L., Rarick H., Schepers T., Pakhlevaniants S., Hamm H. E. NMR structure of a receptor-bound G protein peptide. Nature 1993; 363: 276–281
  • Navon S. E., Fung B. K.-K. Characterization of transducin from bovine retinal rod outer segments. Participation of the amino-terminal region of Tα in subunit interaction. J. Biol. Chem. 1987; 262: 15746–15751
  • Graf R., Mattera R., Codina J., Estes M. K., Bimbaumer L. A truncated recombinant a subunit of Gi3 with a reduced affinity for βγ dimers and altered GTPγS binding. J. Biol. Chem. 1992; 267: 24307–24314
  • Slepak V. Z., Wilkie T. M., Simon M. I. Mutational analysis of G protein a subunit Goα expressed in Escherichia coli. J. Biol. Chem. 1993; 268: 1414–1423
  • Iñiguez-Lluhi J. A., Simon M. I., Robishaw J. D., Gilman A. G. G Protein βγ Subunits Synthesized in SF9 Cells. Functional Characterization and the Significance of Prenylation of γ. J. Biol. Chem. 1992; 267: 23409–23417
  • Berlot C. H., Bourne H. R. Identification of effector-activating residues of Gsα. Cell 1992; 68: 911–922
  • Rarick H. M., Artemyev N. O., Hamm H. E. A site on rod G protein α subunit that mediates effector activation. Science 1992; 256: 1031–1033
  • Lyons J., Landis C. A., Harsh G., Vallar L., Grünwald K., Feichtinger H., Dull Q.-Y., Clark O. H., Kawasaki E., Boume H. R., McCormick F. Two G protein oncogenes in human endocrine tumors. Science 1990; 249: 655–659
  • Cassel D., Selinger Z. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc. Natl. Acad. Sci. USA 1977; 74: 3307–3311
  • Abood M. E., Hurley J. B., Pappone M.-C., Boume H. R., Stryer L. Functional homology between signal-coupling proteins. Cholera toxin inactivates the GTPase activity of transducin. J. Biol. Chem. 1982; 257: 10540–10543
  • Van Dop C., Tsubokawa M., Boume H. R., Ramachandran J. Amino acid sequence of retinal transducin at the site ADP-ribosylated by cholera toxin. J. Biol. Chem. 1984; 259: 696–699
  • Graziano M. P., Gilman A. G. Synthesis in Escherichia coil of GTPasedeficient mutants of Gsα. J. Biol. Chem. 1990; 264: 15475–15482
  • Gupta S. K., Gallego C., Johnson G., Heasley L. E. MAP kinase is constitutively activated in gip2 and src transformed Rat-1a fibroblasts. J. Biol. Chem. 1992; 267: 7987–7990
  • Gupta S. K., Gallego C., Johnson G. L. Mitogenic pathways regulated by G protein oncogenes. Mol. Biol. Cell 1992; 3: 123–128
  • De Vivo M., Chen J., Codina J., Iyengar R. Enhanced phospholipase C stimulation and transformation in NIH-3T3 cells expressing Q209L Gq-α subunits. J. Biol. Chem. 1992; 267: 18263–18266
  • Kroll S. D., Chen J., De Vivo M., Carthy D. J., Buku A., Premont R. T., Iyengar R. The Q205L Go-α subunit expressed in NIH-3T3 cells induces transformation. J. Biol. Chem. 1992; 267: 23182–23188
  • Jiang H., Wu D., Simon M. I. The transforming activity of ativated Gα12. FEBS Lett. 1993; 330: 319–322
  • Chen J. C., Iyengar R. Suppression ofras-induced transformation of NIH-3T3 cells by activated αs. Science 1994, In press
  • Rudolph U., Finegold M. J., Rich S. S., Harriman G. R., Srinivasan Y., Brabet P., Bradley A., Bimbaumer L. Gi2-deficient mice develop inflammatory bowel disease and adenocarcinomas of the colon. 1994, Submitted
  • Nakamoto J. M., Jones E. A., Zimmerman D., Scott M. L., Donlan M. A., Van Dop C. A missense mutation in the GS alpha gene is associated with pseudohypoparathyroidism Type I-A and gonadotropin-Independent precocious puberty. Clin. Res. 1993; 41: 44A, (Abs.)
  • Shenker A., Laue L., Kosugi S., Merendino J. J., Minegishi T., Cutler G. B., Jr. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 1993; 365: 652–654
  • Wess J., Bonner T. I., Derje F., Brann M. R. Delineation of muscarinic receptor domains conferring selectivity of coupling to guanine nucleotide-binding proteins and second messengers. Mol. Pharmacol. 1990; 38: 517–523
  • Blüml K., Mutschler E., Wess J. Identification of an intracellular tyrosine residue critical for muscarinic receptor-mediated stimulation of phosphatidylinositol hydrolysis. J. Biol. Chem. 1994; 269: 402–405
  • Cotecchia S., Exum S., Caron M. G., Lefkowitz R. J. Regions of the α1-adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function Proc. Natl. Acad. Sci. USA 1990; 87: 2896–2900
  • Kjelsberg M. A., Cotecchia S., Ostrowski J., Caron M. G., Lefkowitz R. J. Constitutive activation of the α1B-adrenergic receptor by all amino acid substitutions at a single site. J. Biol. Chem. 1992; 267: 1430–1433
  • Samama P., Cotecchia S., Costa T., Lefkowitz R. J. A mutation induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. J. Biol. Chem. 1993; 268: 4625–4636
  • Ren Q., Kurose H., Lefkowitz R. J., Cotecchia S. Constitutively active mutants of the α2-adrenergic receptor. J. Biol. Chem. 1993; 268: 16483–16487
  • Nishimoto I., Murayama Y., Katada T., Ui M., Ogata E. Possible direct linkage of insulin-like growth factor-II receptor with guanine nucleotide-binding proteins. J. Biol. Chem. 1989; 264: 14029–14038
  • Okamoto T., Katada T., Murayama Y., Ui M., Ogata E., Nishimoto I. A simple structure encodes G protein-activating function of the IGF-II/mannose 6-phosphate receptor. Cell 1990; 62: 709–717
  • Okamoto T., Murayama Y., Hayashi Y., Inagaki M., Ogata E., Nishimoto I. Identification of a Gs activator region of the β2-adrenergic receptor that is autoregulated via protein kinase A-dependent phosphorylation. Cell 1991; 67: 723–730
  • Okamoto T., Nishimoto I. Detcctionm of G protein activator regions in the M4 subtype muscarinic cholinergic and α2-adrenergic receptors based upon characteristics of primary structure. J. Biol. Chem. 1992; 267: 8342–8346
  • Ikezu T., Okamoto T., Ogata E., Nishimoto I. Amino acids 356-372 constitute a Gi-activator sequence of the α2-adrenergic receptor and have a Phe substitute in the G protein-activator sequence motif. FEBS Lett. 1992; 311: 29–32
  • Nishimoto I. The IGF-II receptor system: a G protein-linked mechanism. Molecular Reproduction and Development 1993; 35: 398–407
  • Kataoka R., Sherlock J., Lanier S. M. Signaling events initiated by transforming growth factor-β1 that require Giα1. J. Biol. Chem. 1993; 263: 19851–19857
  • Nishimoto I., Okamoto T., Matsuura Y., Takahashi S., Okamoto T., Uriyama Y., Ogata E. Alzheimer amyloid protein precursor complexes with brain GTP-binding protein Go. Nature 1993; 362: 75–79, (b)
  • Ross E. M., Wong S. K.F., Rubenstein R. C., Higashijima T. Functional domains in the β-adrenergic receptor. Cold Spring Harbor Symp. Quant. Biol. 1988; 53: 99–506
  • Antonelli M., Olate J., Graf R., Allende C. C., Allende J. E. Differential stimulation of the GTPase activity of G-proteins by polylysine. Biochem. Pharmacol. 1992; 44: 547–551
  • Bimbaumer L. Receptor-to-effector signaling through G proteins: roles for βγ dimers as well as for α subunits. Cell 1992; 71: 1069–1072
  • Harwood J. P., Löw H., Rodbell M. Stimulatory and inhibitory effects of guanyl nucleotides on fat cell adenylate cyclase. J. Biol. Chem. 1973; 248: 6239–6245
  • Bimbaumer L. Hormone-sensitive adenylyl cyclases: useful models for studying hormone receptor functions in cell-free systems. Biochim. Biophys. Acta (Reviews on Biomembranes) 1973; 300: 129–158
  • Bokoch G. M., Katada T., Northup J. K., Hewlett E. L., Gilman A. G. Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J. Biol. Chem. 1983; 258: 2071–2075
  • Codina J., Hildebrandt J. D., Iyengar R., Bimbaumer L., Sekura R. D., Manclark C. R. Pertussis toxin substrate, the putative Ni of adenylyl cyclases, is an alpha/beta heterodimer regulated by guanine nucleotide and magnesium. Proc. Natl. Acad. Sci. USA 1983; 80: 4276–4280
  • Hildebrandt J. D., Hanoune J., Bimbaumer L. Guanine nucleotide inhibition of cyc- s49 mouse lymphoma cell membrane adenylyl cyclase. J. Biol. Chem. 1982; 257: 14723–14725
  • Hildebrandt J. D., Codina J., Bimbaumer L. Interaction of the stimulatory and inhibitory regulatory proteins of the adenylyl cyclase system with the catalytic component of cyc- s49 cell membranes. J. Biol. Chem. 1984; 259: 13178–13185
  • Toro M.-J., Montoya E., Bimbaumer L. Inhibitory regulation of adenylyl cyclases. Evidence against a role for βγ complexes of G proteins as mediators of G; dependent hormonal effects. Mol. Endocrinol. 1987; 1: 669–676
  • Jacobowitz O., Chen J., Premont R. T., Iyengar R. Stimulation of specific types of Gs-stimulated adenylyl cyclases by phorbol esther treatment. J. Biol. Chem. 1993; 268: 3829–3832
  • Chen J. C., Iyengar R. Inhibition of cloned adenylyl cyclases by mutant-activated Gi-α and specific suppression of type 2 adenylyl cyclase inhibition by phorbol ester wutreatment. J. Biol. Chem. 1993; 268: 12253–12256
  • Waldo G. L., Boyer J. L., Morris A. J., Harden T. K. Purification of an AIF-4 and G-protein βγ-subunit-regulated phospholipase C-activating protein. J. Biol. Chem. 1991; 266: 14217–14255
  • Cooper C. L., Morris A. J., Harden T. K. Guanine nucleotide-sensitive interaction of a radiolabeled agonist with a phospholipase C-linked P2y-purinergic receptor. J. Biol. Chem. 1989; 264: 6202–6206
  • Park D., Jhon D. Y., Kritz R., Knopf J., Rhee S. G. Cloning, expression and Gq-independent activation of phospholipase C-β2. J. Biol. Chem. 1992; 267: 16048–16055
  • Lee C. H., Park D., Wu D., Rhee S. G., Simon M. I. Members of the Gq alpha subunit gene family activate phospholipase C-beta isozymes. J. Biol. Chem. 1992; 267: 16044–16047
  • Camps M., Hou C., Sidiropoulos D., Stock J. B., Jakobs K. H., Gierschik P. Stimulation of phospholipase C by guanine-nucleotide-binding protein βγ subunits. Eur. J. Biochem. 1992a; 206: 821–831
  • Camps M., Carozzi A., Schnabel P., Scheer A., Parker P. J., Gierschik P. Isozyme-selective stimulation of phospholipase C-β2 by G protein βγ-subunits. Nature 1992b; 360: 684–686
  • Katz A., Wu D., Simon M. I. βγ subunits of the heterotrimeric G protein activate the β2 isoform of phospholipase C. Nature 1992; 360: 686–689
  • Wu D., Lee C. H., Rhee S. G., Simon M. I. Activation of phospholipase C by the α subunit of the Gq and G11 protein in transfected COS-7 cells. J. Biol. Chem. 1992; 267: 1811–1817
  • Wu D., Katz A., Simon M. I. Activation of phospholipase C β2 by the a and βγ subunits of trimeric GTP-binding protein. Proc. Natl. Acad. Sci. USA 1993a; 90: 5297–5301
  • Wu D., Jiang H., Katz A., Simon M. I. Identification of critical regions on phospholipase C-β1 required for activation by G-proteins. J. Biol. Chem. 1993b; 268: 3704–379
  • Blank J. L., Brattain K. A., Exton J. H. Activation of cytosolic phosphoinositide phospholipase C by G-protein βγ subunits. J. Biol. Chem. 1992; 267: 23069–23075
  • Hepler J. R., Kozasa T., Smrcka A. V., Simon M. I., Rhee S. G., Sternweis P. C., Gilman A. G. Purification from Sf9 cells and characterization of recombinant Gaα and Gqα. Activation of purified phospholipase C isozymes by Gα subunits. J. Giol. Chem. 1993; 268: 14367–14375
  • Carozzi A., Camps M., Gierschik P., Parker P. J. Activation of phosphatidylinositol lipid-specific phospholipase C-β3 by G-protein βγ subunits. FEBS Lett. 1993; 315: 340–342
  • Schnabel P., Schreck R., Schiller D. L., Camps M., Gierschik P. Stimulation of phospholipase C by a mutationally activated G protein α16 subunit. Biochem. Biophys. Res. Commun. 1993; 188: 1018–1023
  • Park D., Jhon D. Y., Lee C. W., Ryu S., Rhee S. G. Removal of the carboxyterminal region of phospholipase C-β1 by calpain abolishes activation by Gqα. J. Biol. Chem. 1993; 268: 3710–374
  • Berstein G., Blank J. L., Smrcka A. V., Higashijima T., Sternweis P. C., Exton J. H., Ross E. M. Reconstitution of agonist-stimulated phosphatidylinositol 4,5-tris- phosphate hydrolysis using purified M1 muscarinic receptor, Gq/11 and phospholipase C-β1. J. Biol. Chem. 1992; 267: 8081–8088
  • Berstein G., Blank J. L., Jhon D. Y., Exton J. H., Rhee S. G., Ross E. M. Phospholipase C-β1 is a GTPase-activating protein for Gg/11. its physiologic regulator. Cell 1992; 70: 411–418
  • Bimbaumer L., Bearer C. F., Iyengar R. A two-state model of an enzyme with an allosteric regulatory site capable of metabolizing the regulatory ligand: Simplified mathematical treatments of transient and steady state kinetics of an activator and its competitive inhibition as applied to adenylyl cyclases. J. Biol. Chem. 1980; 255: 3552–3557
  • Iyengar R., Abramowitz J., Bordelon-Riser M. E., Bimbaumer L. Hormone receptor-mediated stimulation of adenylyl cyclase systems. Nucleotide effects and analysis in terms of a two-state model for the basic receptor-affected enzyme. J. Biol. Chem. 1980; 255: 3558–3564
  • Kleuss C., Hescheler J., Ewel C., Rosenthal W., Schultz G., Wittig B. Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 1991; 353: 43–48
  • Kleuss C., Scherübl H., Hescheler J., Schultz G., Wittig B. Different β-subunits determine G protein interaction with transmembrane receptors. Nature 1992; 358: 424–426
  • Kleuss C., Scherübl H., Hescheler J., Schultz G., Wittig B. Selectivity in signal transduction determined by γ subunits of heterotrimeric G proteins. Science 1993; 259: 832–834
  • Yatani A., Codina J., Sekura R. D., Bimbaumer L., Brown A. M. Reconstitution of somatostatin and muscarinic receptor mediated stimulation of K+ channels by isolated Gk protein in clonal rat anterior pituitary cell membranes. Mol. Endocrinol. 1987; 1: 283–289
  • Amatruda T. T., III, Gerard N. P., Gerard C., Simon M. I. Specific interactions of chemoattractant factor receptors with G-proteins. J. Biol. Chem. 1993; 268: 10139–10144
  • Wu D., LaRosa G. J., Simon M. I. G protein-coupled signal transduction pathways for interleukin-8. Science 1993c; 261: 101–103
  • Ashkenazi A., Winslow J. W., Peralta E. G., Peterson G. L., Schimerlik M. I., Capon D. J., Ramachandran J. An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. Science 1987; 238: 672–675
  • Fargin A., Reymond J. R., Regan J. W., Cotecchia S., Lefkowitz R. J., Caron M. G. Effector coupling mechanisms of the cloned 5-HT1A receptor. J. Biol. Chem. 1989; 264: 14949–14852
  • Raymond J. R., Albers F. J., Middleton J. P., Lefkowitz R. J., Caron M. G., Obeid L. M., Dennis V. W. 5-HT1A and histamine H1 receptors in HeLa cells stimulate phosphoinositide hydrolysis and phosphate uptake via distinct G protein pools. J. Biol. Chem. 1991; 266: 372–379
  • Vallar L., Muca C., Magni M., Albert P., Bunzow J., Meldolesi J., Civelli O. Differential coupling of dopaminergic D2 receptors expressed in different cell types. Stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis in Ltkfibroblasts, hyperpolarization, and cytosolic free Ca2+ concentration decrease in GH4C1 Cells. J. Biol. Chem. 1990; 265: 10320–10326
  • VanSande J., Raspe E., Perret J., Lejeune C., Manhaut C., Vassart G., Dumont J. E. Thyrotropin activates both the cAMP and the PIP2 cascade in CHO cells expressing the human cDNA of the TSH receptor. Mol. Cell. Endo. 1990; 74: R1–R6
  • Gudermann T., Bimbaumer M., Bimbaumer L. Evidence for dual coupling of the murine LH receptor to adenylyl cyclase and phosphoinositide breakdown/Ca2+ mobilization. studies with the cloned murine LH receptor expressed in L cells. J. Biol. Chem. 1992; 267: 4479–4488
  • Chabre O., Conklin B. R., Lin H. Y., Lodish H. F., Wilson E., Ives H. E., Catanzariti L., Hemmings B. A., Bourne H. R. A recombinant calcitonin receptor independently stimulates 3′,5′-cyclic adenosine monophosphate and Ca2+/inositol phosphate signaling pathways. Mol. Endocrinol. 1992; 6: 551–556
  • Abou-Sambra A. B., Jüpmer H., Force T., Freeman M. W., Kong X. F., Schipani E., Urena P., Richards J., Bonventre J. V., Potts J. T., Jr., Kronenberg H. M., Segre G. V. Expression cloning of a common receptor for parathryoid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: A single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc. Natl. Acad. Sci. USA 1992; 89: 2732–2736
  • Northup J. K., Smigel M. D., Sternweis P. C., Gilman A. G. The Subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000-dalton (alpha) subunit. J. Biol. Chem. 1983; 258: 11369–11376
  • Codina J., Hildebrandt J. D., Sekura R. D., Bimbaumer M., Bryan J., Manclark C. R., Iyengar R., Bimbaumer L. Ns and Ni. the stimulatory and inhibitory regulatory components of adenylyl cyclases. Purification of the human erythrocyte proteins without the use of activating regulatory ligands. J. Biol. Chem. 1984; 259: 5871–5886
  • Eason M. G., Kurose H., Holt B. D., Raymond J. R., Liggett S. B. Simultaneous coupling of α2-adrenergic receptors to two G-proteins with opposing effects. Subtype selective coupling of α2C10, α2C4 and a2α2C2 adrenergic receptors to Gi and Gs J. Biol. Chem. 1992; 267: 15795–15801
  • Kisselev O., Gautam N. Specific interactions with rhodopsin is dependent on the γ subunit type in a G protien. J. Biol. Chem. 1993; 268: 24519–24522
  • Luttrell L. M., Ostrowski J., Cotecchia S., Kendall H., Lefkowitz R. J. Antagonism of catecholamine receptor signaling by expression of cytoplasmic domains of the receptor. Science 1993; 259: 1453–1457
  • Bimbaumer L., Abramowitz J., Brown A. M. Signal transduction by G proteins. Biochim. Biophys. Acta. (Reviews in Biomembranes) 1990; 1031: 163–224
  • Artemyev N. O., Mills J. S., Thomburg K. R., Knapp D. R., Schey K. L., Hamm H. A site on transducin α-subunit of interaction with the polycationic region of cGMP phosphodiesterase inhibitory subunit. J. Biol. Chem. 1993; 268: 23611–23615

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.