4
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Minireview: Biochemical Approaches to Examine the Specificity of Interactions Between Receptors and Guanine Nuclotide Binding Proteins

, , &
Pages 253-265 | Published online: 26 Sep 2008

References

  • McKenzie F. R., Kelly E. C.H., Unson C. G., Spiegel A. M., Milligan G. Antibodies which recognize the C-terminus of the inhibitory guanine nucleotide binding protein (Gi) demonstrate that opioid peptides and foetal calf serum stimulate the high affinity GTPase activity of two separate pertussis toxin substrates. Biochem. J. 1988; 249: 653–659
  • Cerione R. A., Kroll S., Rajaram R., Unson C., Goldsmith P, Spiegel A. M. An antibody directed against the carboxyl-terminal decapeptide of the a subunit of the retinal GTP binding protein. transducin. Effects on transducin function. J. Biol. Chem. 1988; 263: 9345–9352
  • McKenzie F. R., Milligan G. δ opioid receptor mediated inhibition of adenylate cyclase is transduced specifically by the guanine nucleotide binding protein Gi2. Biochem. J. 1990; 267: 391–398
  • Simonds W. F., Goldsmith P. K., Woodward C. J., Unson C. G., Spiegel A. M. Receptor and effector interactions of Gs: functional studies to the as carboxyl-terminal decapeptide. FEBS Lett 1989; 249: 189–194
  • Simonds W. F., Goldsmith P. K., Codina J., Unson C. G., Spiegel A. M. Gi2 mediates α2 adrenergic inhibition of adenylate cyclase in platelet membranes; in situ identification with Gα C-terminal antibodies. Proc. Natl. Acad. Sci. (U.S.A.) 1989; 86: 7809–7813
  • Gutowski S., Smrcka A., Nowak L., Wu D., Simon M., Sternweis P. C. Antibodies to the αq subfamily of guanine nucleotide binding regulatory protein α subunits attenuate activation of phosphatidylinositol 4,5 bisphosphate hydrolysis by hormones. J. Biol. Chem. 1991; 266: 20519–20524
  • McFadzean I., Mullaney I., Brown D. A., Milligan G. Antibodies to the GTP binding protein. Go, antagonize noradrenaline-induced calcium current inhibition in NG108-15 hybrid cells. Neuron 1989; 3: 177–182
  • Harris-Warrick R., Hammond C., Paupardin-Tritsch D., Homberger V., Rouot B., Bockaert J., Gerschenfeld H. M. The a subunit of a GTP binding protein homologous to mammalian Goα mediates a dopamine-induced decrease of calcium current in snail neurons. Neuron 1988; 1: 27–32
  • Jones S., Caulfield M. P., Milligan G., Brown D. A. Anti-Gαq/11 antibody reduces muscarinic inhibition of M-current in rat cultured sympathetic neurones. J. Physiol. 1994, in press
  • Logothetis D. E., Kim D., Northup J. K., Neer E. J., Clapham D. E. Specificity of action of guanine nucleotide-binding regulatory protein subunits on the cardiac muscarinic K+ channel Proc. Natl. Acad. Sci. (U.S.A.) 1988; 85: 5814–5818
  • Yatani A., Mattera R., Codina J., Graf R., Okabe K., Padrell E., Iyengar R., Brown A. M., Birnbaumer L. The G-protein gated atrial K+ channel is stimulated by three distinct Giα subunits. Nature 1988; 336: 680–682
  • Georgoussi Z., Can C., Milligan G. Direct measurements of in situ interactions of rat brain opioid receptors with the guanine nucleotide binding protein Go. Mol. Pharmacol. 1993; 44: 62–69
  • Noel J. P., Hamm H. E., Sigler P. B. The 2.2A crystal structure of transducin-α complexed with GTPγS. Nature 1993; 366: 654–663
  • Law S. F., Manning D., Reisine T. Identification of the subunits of GTP binding proteins coupled to somatostatin receptors. J. Biol. Chem. 1991; 266: 17885–17897
  • Okuma Y., Reisine T. Immunoprecipitation of α2a adrenergic receptor-GTP-binding protein complexes using GTP-binding protein selective antisera. Changes in receptor/GTP-binding protein interaction following agonist binding. J. Biol. Chem. 1992; 267: 14826–14831
  • Eason M. G., Kurose H., Holt B. D., Raymond J. R., Liggett S. B. Simultaneous coupling of α2 adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of α2C10, α2C4 and α2C2 adrenergic receptors to Gi and Gs. J. Biol. Chem. 1992; 267: 15795–15801
  • Kleuss C., Hescheler J., Ewel C., Rosenthal W., Schultz G., Wittig B. Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 1991; 353: 43–48
  • Kleuss C., Scherubl H., Hescheler J., Schultz G., Wittig B. Different β subunits determine G-protein interaction with transmembrane receptors. Nature 1992; 358: 424–426
  • Kleuss C., Scherubl H., Hescheler J., Schultz G., Wittig B. Selectivity in signal transduction determined by γ subunits of heterotrimeric G-proteins. Science 259 1993; 259: 832–834
  • Wang H. Y., Watkins D. C., Malbon C. C. Antisense oligodeoxynucleotides to Gs protein α subunit sequence accelerate differentiation of fibroblasts to adipocytes. Nature 1992; 358: 334–337
  • Paulssen R. H., Paulssen E. J., Gautvik K. M., Gordeladze J. O. The thyroliberin receptor interacts directly with a stimulatory guanine nucleotide binding protein in the activation of adenylyl cyclase in GH3 rat pituitary tumour cells. Evidence obtained by the use of antisense RNA inhibition and immunoblocking of the stimulatory guanine nucleotide binding protein. Eur. J. Biochem. 1992; 204: 413–418
  • Gierschik P., Sidiropoulos D., Jakobs K. H. Two distinct Gi-proteins mediate formyl peptide receptor signal transduction in human leukaemia (HL60) cells. J. Biol. Chem. 1989; 264: 21470–21473
  • Milligan G., Carr C., Gould G. W., Mullaney I., Lavan B. E. Agonist-dependent, cholera toxin-catalysed ADP-ribosylation of pertussis toxin sensitive G-proteins following transfection of the human α2-C10 adrenergic receptor into Rat 1 fibroblasts. Evidence for the direct interaction of a single receptor with two pertussis toxin-sensitive G-protein Gi2 and Gi3. J. Biol. Chem. 1991; 266: 6447–6455
  • Dell'Acqua M. L., Carroll R. E., Peralta E. G. Transfected m2 muscarinic acetylcholine receptors couple to Gαi2 and Gαi3 in chinese hamster ovary cells. J. Biol. Chem. 1993; 268: 5676–5685, 1993
  • Roerig S. C., Loh H. H., Law P. Y. Identification of three separate guanine nucleotide binding proteins that interact with the δ opioid receptor in NG108-15 cells. Mol. Pharmacol. 1992; 41: 822–831
  • McClue S. J., Selzer E., Freissmuth M., Milligan G. Gi3 does not contribute to the inhibition of adenylyl cyclase when stimulation of an α2-adrenergic receptor causes inhibition of both Gi2 and Gi3. Biochem. J. 1992; 284: 565–568
  • Bornancin F., Audigier Y., Chabre M. ADP-ribosylation of Gs by cholera toxin is potentiated by agonist activation of β adrenergic receptors in the absence of GTP. J. Biol. Chem. 1993; 268: 17026–17029
  • Wange R. L., Smrcka A. V., Sternweis P. C., Exton J. H. Photoaffinity labelling of two rat liver plasma membrane proteins with [32P]β-azidoanilide GTP in response to vasopressin. J. Biol. Chem. 1991; 266: 11409–11412
  • Offermans S., Schultz G., Rosenthal W. Identification of receptor-activated G-proteins with photoreactive GTP analog [α-32P]GTP azidoanilide. Meth. Enzymol. 1991; 195: 286–301
  • Offermans S., Laugwitz K-L, Spicher K., Schultz G. G-proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc. Natl. Acad. Sci. (U.S.A.) 1994; 91: 504–508
  • Milligan G. Techniques used in the identification and analysis of function of pertussis toxin sensitive guanine nucleotide binding proteins. Biochem. J. 1988; 255: 1–13
  • McKenzie F. R., Milligan G. Prostaglandin E1-mediated, cyclic AMP-independent, downregulation of Gsα in neuroblastoma x glioma hybrid cells. J. Biol. Chem. 1990; 265: 17084–17093
  • Mitchell F. M., Buckley N. J., Milligan G. Enhanced degradation of the phosphoinositidase C-linked guanine nucleotide binding protein Gqα/G11α following activation of the human M1 muscarinic acetylcholine receptor expressed in CHO cells. Biochem. J. 1993; 293: 495–499
  • Levis M. J., Bourne H. R. Activation of the a subunit of Gs in intact cells alters its abundance. rate of degradation, and membrane avidity. J. Cell. Biol. 1992; 119: 1297–1307
  • Adie E. J., Milligan G. Agonist regulation of cellular levels of the stimulatory guanine nucleotide binding protein, Gs. in wild type and transfected neuroblastoma-glioma hybrid NG108-15 cells. Biochem. Soc. Trans. 1993; 21: 432–435

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.