51
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Minireview: Noncompetitive Agonism at Nicotinic Acetylcholine Receptors; Functional Significance for CNS Signal Transduction

, , , , , , , , & show all
Pages 333-353 | Published online: 26 Sep 2008

References

  • Maelicke A. Structure and function of the nicotinic acetylcholine receptor. Handbook of Experimental Pharmacology, Vol. 86, V. P. Whittaker. Springer, Berlin 1988; 267–313
  • Shaw K. P., Aracava Y., Akaide A., Daly J. W., Rickett D. L., Albuquerque E. X. The reversible cholinesterase inhibitor physostigmine has channel-blocking and agonist effects on the acetylcholine receptor-ion channel complex. Mol. Pharmacol. 1985; 28: 527–538
  • Albuquerque E. E., Aracava Y., Cintra W. M., Brossi A., Schönenberger B., Deshpande S. S. Structure-activity relationship of reversible cholinesterase inhibitors: activation. channel blockade, and stereospecificity of the nicotinic acetylcholine-ion channel complex. Brazilian J. Med. Biol. Res. 1988; 21: 1173–1196
  • Okonjo K. O., Kuhlmann J., Maelicke A. A second pathway for the activation of the Torpedo acetylcholine receptor. Eur. J. Biochem., 200: 671–677
  • Maelicke A., Coban T., Schrattenholz A., Schroder B., Reinhardt-Maelicke S., Storch A., Godovac-Zimmermann J., Methfessel C., Pereira E. F.R., Albuquerque E. X. Physostigmine and neuromuscular transmission. In: Myasthenia gravis and related disorders: Experimental and clinical aspects. Ann. N. Y. Acad. Sci., Vol. 681, A. S. Penn, D. P. Richman, R. L. Ruff, V. A. Lennon, 1993; 140–154, eds.
  • Pereira E. F.R., Reinhardt-Maelicke S., Schrattenholz A., Maelicke A., Albuquerque E. X. Identification and characterization of a new agonist site on nicotinic acetylcholine receptors of cultured hippocampal neurons. J. Pharmacol. Exptl. Therapeutics 1993; 265: 1474–1491
  • Schrattenholz A., Godovac-Zimmermann J., Schäfer H.-J., Albuquerque E. X., Maelicke A. Photoaffinity labeling of Torpedo acetylcholine receptor by the reversible cholinesterase inhibitor physostigmine. Eur. J. Biochem. 1993; 216: 671–677
  • Schröder B., Reinhardt-Maelicke S., Schrattenholz A., McLane K. E., Kretschmer A., Conti-Tronconi B. M., Maelicke A. Monoclonal antibodies FK1 and WF6 define two neighboring ligand binding sites on Torpedo acetylcholine receptor α-polypeptide. J. Biol. Chem. 1994; 269: 10407–10416
  • Sargent P. B. The diversity of neuronal acetylcholine receptors. Ann. Rev. Neurosci. 1993; 16: 493–543
  • Kao P. N., Dwork A. J., Kaldany R. R., Silver M. L., Wideman J., Stein S., Karlin A. Identification of the a subunit half-cystine specifically labled by an affinity reagent for the acetylchholine receptor binding site. J. Biol. Chem. 1984; 259: 11662–11665
  • Conti-Tronconi B. M., Tang F., Diethelm B. M., Spencer S. R., Reinhardt-Maelicke S., Maelicke A. Mapping of a cholinergic binding site by means of synthetic peptides. monoclonal antibodies and α-bungarotoxin. Biochemistry 1990; 29: 6221–6230
  • Deneris E. S., Conolly J., Rogers S. W., Duvoisin R. Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors. Trends in Pharmacol. Sci. 1991; 12: 34–40
  • Role L. W. Diversity in primary structure and function of neuronal nicotinic acetylcholine receptor channels. Curr. Opin. Neurosci. 1992; 2: 254–262
  • Vernallis A. B., Conroy W. G., Berg D. W. Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes. Neuron 1993; 10: 451–464, &
  • Alkondon M., Reinhardt S., Lobron C., Hermsen B., Maelicke A., Albuquerque E. X. Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons: II. Rundown and inward rectification of agonist-elicited whole-cell currents and identification of receptor subunits by in situ hybridization. J. Pharmacol. Exp. The-rap. 1994, in press
  • Storch A., Cooper J. C., Gutbrod O., Weber K.-H., Reinhardt S., Lobron C., Hermsen B., Soskic V., Schrattenholz A., Pereira E. F.R., Albuquerque E. X., Methfessel C., Maelicke A. Physostigmine, galanthamine and codeine act as noncompetitive nicotinic agonists on clonal rat pheochromocytoma cells. Mol. Pharmacol. 1994, in press
  • Wonnacott S., Irons J., Lunt G. G., Rapier C. M., Albuquerque E. X. α-Bungartoxin and presynaptic nicotinic receptors: functional studies. Nicotinic acetylcholine receptors in the nervous system, F. Clementi. Springer, Berlin 1988; 41–60
  • Lena C., Changeux J.-P., Mulle C. Evidence for “preterminal” nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus. J. Neurosci. 1993; 13: 2680–2688
  • Giacobini E. The cholinergic system in Alzheimer's disease. Prog. Barin Res. 1990; 84: 321–322
  • Levin E. D., Briggs S. J., Christopher N. C., Rose J. E. Persistence of chronic nicotine-induced cognitive facilitation. Behav. Neural. Biol. 1992; 58: 152–158
  • Engstrom D. A., Bickford P., De la Garza R., Young D., Rose G. M. Increased responsiveness of hippocampal pyramidal neurons to nicotine in aged. learning-impaired rats. Neurobiol. Aging 1993; 14: 259–266
  • Montes J. G., Alkondon M., Pereira E. F.R., Albuquerque E. X. Nicotinic acetylcholine receptors of the mammalian central nervous system. Handbook of Membrane Channels: Molecular and Cell Physiology, C. Peracchia. Academic Press, San Diego 1994, in press
  • Alkondon M., Pereira E. F.R., Wonnacott S. E., Albuquerque E. X. Blockade of nicotinic currents in hippocampal neurons defines methyllycaconitine as a potent and specific receptor antagonist. Mol. Pharmacol. 1992; 41: 802–808
  • Alkondon M., Albuquerque E. X. Diversity of nicotinic currents in rat hippocampal neurons: I. Pharmacological and functional evidence for distinct structural subtypes. J. Pharmacol. Exp. Therap. 1993; 265: 1455–1473, &
  • Alkondon M., Albuquerque E. X. Presence of α-bungarotoxin- and methyllycaconitine-sensitive nicotinic acetylcholine receptors in rat olfactory bulb neurons. Neurosci. Lett. 1994, in press
  • Schröder H., Zilles K., Maelicke A., Hajos F. Immunohisto- and cytochemical localization of cortical nicotinic cholinoreceptors in rat and man. Brain Res. 1989; 502: 287–295
  • Schroder H., Giacobini E., Struble R. G., Zilles K., Maelicke A. Nicotinic cholinoreceptive neurons of the frontal cortex are reduced in Alzheimer's disease. Neurobil. Aging 1991; 12: 259–262
  • Bormann J., Matthaei. Three types of acetylcholine-induced single-channel currents in clonal rat pheochromocytoma cells. Neurosci. Lett. 1983; 40: 193–197
  • Ifune C. K., Steinbach J. H. Rectification of acetylcholine-elicited currents in PC12 pheochomocytoma cells. Proc. Natl. Acad. Sci. USA 1990; 87: 4794–4798
  • Kuhlmann J., Okonjo K. O., Maelicke A. Desensitization is a property of the cholinergic binding region of the nicotinic acetylcholine receptor. not of the receptor-integral ion channel. FEES Lett. 1991; 279: 216–218
  • Pereira E. F.R., Alkondon M., Reinhardt S., Maelicke A., Peng X., Lindstrom J., Whiting P., Albuquerque E. X. Physostigmine and galanthamine characterize the presence of a novel binding site on the α4β2 subtype of neuronal nicotinic acetylcholine receptors stably expressed in fibroblast cells. J. Pharmacol. Exp. Ther. 1994, in press
  • Tonkopii V. D., Prozorovskii V. B. Galanthamine interaction with mouse brain acetylcholinesterase in in vivo experiments. Biull. Eksp. Bio. Med. 1976; 82: 823–825
  • Colasanti B. K. Narcotic analgesics and antagonists. In. Modern Pharmacology, C. R. Craig, R. E. Stitzel. Little, Brown and Company, Boston 1982; 563–579
  • Harris L. S., Dewey W. L. Role of cholinergic systems in the central action of narcotic agonists and antagonists. Agonist and Antagonist Action of Narcotic Analgesics, H. W. Kosterlitz, H. O. Collier, J. E. Villareal. University Park Press, Baltimore 1973; 198–206, &
  • Whiting P., Schoepfer R., Lindstrom J., Priestley T. Structural and pharmacological characterization of the major brain nicotinic acetylcholine receptor subtype stably transfected in mouse fibroblasts. Mal. Pharmacol. 1991; 40: 463–472
  • Maelicke A., Coban T., Schrattenholz A., Methfessel C. Cation flux through Torpedo electrocyte membrane vesicles activated by noncompetitive agonists. 1994, Submitted
  • Hermsen B., Thees R., Reinhardt S., Maelicke A. Local and stage-specific expression of five nicotinic acetylcholine receptor subtypes in the nervous system of Locusta migratoria. 1994, Submitted
  • Noda M., Takahashi H., Tanabe T., Toysato M., Kikyotqani S., Hirose T., Takashima H., Inayama S., Miyata T., Numa S. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 1982; 302: 528–532
  • Jackson M. B., Wang B. S., Morris C. E., Lecar H, Christion C. Successsive openings of the same acetylcholine receptor are correlated in open time. Biophys. J. 1983; 42: 109–114
  • Scatton B. The NMDA receptor complex. Fund. Clin. Pharmacol. 1993; 7: 389–400
  • Johnson J. W., Acher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987; 325: 529–531, &
  • Majewska P. Neurosteroids: Endogenous bimodal modulators of GABAA receptors. Mechanism of action and physiological significance. Prog. Neurobiol. 1992; 38: 379–395
  • Vyklicky L., Benviste M., Mayer M. L. Modulation of NMDA receptor desensitization by glycine in mouse cultured hippocampal neurons. J. Physiol. 1990; 428: 313–331

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.