414
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Aqueous stability of leuprolide acetate: effect of temperature, dissolved oxygen, pH and complexation with β-cyclodextrin

, &
Pages 108-115 | Received 05 Jul 2014, Accepted 25 Sep 2014, Published online: 21 Oct 2014

References

  • Teutonico D, Montanari S, Ponchel G. Leuprolide acetate: pharmaceutical use and delivery potentials. Expert Opin Drug Del 2012;9:343–354
  • Wilson AC, Meethal SV, Bowen RL, Atwood CS. Leuprolide acetate: a drug of diverse clinical applications. Expert Opin Invest Drug 2007;16:1851–1863
  • Hosmer JM, Shin SH, Nornoo A, et al. Influence of internal structure and composition of liquid crystalline phases on topical delivery of paclitaxel. J Pharm Sci 2011;100:1444–1455
  • Hall SC, Tan MM, Leonard JJ, Stevenson CL. Characterization and comparison of leuprolide degradation profiles in water and dimethyl sulfoxide. J Pept Res 1999;53:432–441
  • Schädlich A, Kempe S, Mäder K. Non-invasive in vivo characterization of microclimate pH inside in situ forming PLGA implants using multispectral fluorescence imaging. J Control Release 2014;179:52–62
  • Liu Y, Ghassemi AH, Hennink WE, Schwendeman SP. The microclimate pH in poly(d,l-lactide-co-hydroxymethyl glycolide) microspheres during biodegradation. Biomaterials 2012;33:7584–7593
  • Ding AG, Schwendeman SP. Acidic microclimate pH distribution in PLGA microspheres monitored by confocal laser scanning microscopy. Pharm Res 2008;25:2041–2052
  • Li L, Schwendeman SP. Mapping neutral microclimate pH in PLGA microspheres. J Control Release 2005;101:163–173
  • Marinina J, Shenderova A, Mallery SR, Schwendeman SP. Stabilization of vinca alkaloids encapsulated in poly(lactide-co-glycolide) microspheres. Pharm Res 2000;17:677–683
  • Adjei AL, Hsu L. Leuprolide and other LH-RH analogues. In: Wang YJ, Pearlman R, eds. Stability and characterization of protein and peptide drugs. New York: Plenum Press; 1993:159–199
  • Oyler AR, Naldi RE, Lloyd JR, et al. Characterization of the solution degradation products of histrelin, a gonadotropin releasing hormone (LH/RH) agonist. J Pharm Sci 1991;80:271–275
  • Okada J, Seo T, Kasahara F, et al. New degradation product of des-Gly10-NH2-LH-RH-ethylamide (fertirelin) in aqueous solution. J Pharm Sci 1991;80:167–170
  • Motto MG, Hamburg PF, Graden DA, et al. Characterization of the degradation products of luteinizing hormone releasing hormone. J Pharm Sci 1991;80:419–423
  • Berrill A, Biddlecombe J, Bracewell D. Product quality during manufacture and supply. In: Van Der Walle C, ed. Peptide and protein delivery. London: Academic Press; 2011:313–339
  • Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 2000;32:307–326
  • Berlett BS, Stadtman ER. Protein oxidation in aging, disease and oxidative stress. J Biol Chem 1997;272:20313–20316
  • Li S, Schöneich C, Borchardt RT. Chemical pathways of peptide degradation. VIII. Oxidation of methionine in small model peptides by prooxidant/transition metal ion systems: influence of selective scavengers for reactive oxygen intermediates. Pharm Res 1995;12:348–355
  • Stevenson CL. Formulation of leuprolide at high concentration for delivery from a one-year duration implant. In: McNally EJ, Hastedt JE, eds. Protein formulation and delivery. New York: Informa Healthcare USA, Inc.; 2008:153–175
  • Stevenson CL, Corley CA, Cukierski M, et al. Characterization of a stable leuprolide formulation for one year in an implantable device. In: Tam JP, Kaumaya PTP, eds. Peptides frontiers of peptide science. Dordrecht, the Netherlands: Springer; 2002:828–830
  • Wright JC, Leonard ST, Stevenson CL, et al. An in vivo/in vitro comparison with a leuprolide osmotic implant for the treatment of prostate cancer. J Control Release 2001;75:1–10
  • Stevenson CL, Leonard JJ, Hall SC. Effect of peptide concentration and temperature on leuprolide stability in dimethyl sulfoxide. Int J Pharm 1999;191:115–129
  • Dong WY, Körber M, Esguerra VL, Bodmeier R. Stability of poly(D,L-lactide-co-glycolide) and leuprolide acetate in in-situ forming drug delivery systems. J Control Release 2006;115:158–167
  • Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Del Rev 2007;59:645–666
  • Kawaguchi Y, Nishiyama T, Okada M, et al. Complex formation of poly(ε-caprolactone) with cyclodextrins. Macromolecules 2000;33:4472–4477
  • Hak SC, Tooru O, Shintrao S, Nobuhiko Y. Control of rapid phase transition induced by supramolecular complexation of β-cyclodextrin-conjugated poly(ε-lysine) with a specific guest. Macromolecules 2003;36:5342–5347
  • Carrier RL, Miller LA, Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability. J Control Release 2007;123:78–79
  • Loftsson T, Brewster ME, Másson M. Role of cyclodextrins in improving oral drug delivery. Am J Drug Del 2004;2:261–275
  • Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 1996;85:1017–1025
  • El-Badry M, Taha EI, Alanazi FK, Alsarra IA. Study of omeprazole stability in aqueous solution: influence of cyclodextrins. J Drug Del Sci Technol 2009;19:347–351
  • Joudieh S, Bon P, Martel B, et al. Cyclodextrin polymers as efficient solubilizers of albendazole: complexation and physico-chemical characterization. J Nanosci Nanotechnol 2008;8:1–9
  • Oda M, Saitoh H, Kobayashi M, Aungst BJ. β-Cyclodextrin as a suitable solubilizing agent for in situ absorption study of poorly water-soluble drugs. Int J Pharm 2004;280:95–102
  • Haeberlin B, Gengenbacher T, Meinzer A, Fricker G. Cyclodextrins – useful excipients for oral peptide administration? Int J Pharm 1996;137:103–110
  • Prankerd RJ, Stone HW, Sloan KB, Perrin JH. Degradation of aspartame in acidic aqueous media and its stabilization by complexation with cyclodextrins or modified cyclodextrins. Int J Pharm 1992;88:189–199
  • Adjei A, Sundberg D, Miller J, Chun A. Bioavailability of leuprolide acetate following nasal and inhalation delivery to rats and healthy humans. Pharm Res 1992;9:244–249
  • Yetkin G, Celebi N, Ozogul C, Demiryürek AT. Enhancement of nasal absorption of salmon calcitonin in rabbits using absorption enhancer. STP Pharma Sci 2001;11:187–191
  • Yetkin G, Celebi N, Agabeyoglu I, Gökcora N. The effect of dimethyl β-cyclodextrin and sodium taurocholate on the nasal bioavailability of salmon calcitonin in rabbits. STP Pharma Sci 1999;9:249–252
  • Matsubara K, Abe K, Irie T, Uekama K. Improvement of nasal bioavailability of luteinizing hormone-releasing hormone agonist, buserelin, by cyclodextrin derivatives in rats. J Pharm Sci 1995;84:1295–1300
  • Abe K, Irie T, Uekama K. Enhanced nasal delivery of luteinizing hormone releasing hormone agonist buserelin by oleic acid solubilized and stabilized in hydroxypropyl-β-cyclodextrin. Chem Pharm Bull (Tokyo) 1995;43:2232–2237
  • Verhoef JC, Schipper NGM, Romeijn SG, Merkus FWHM. The potential of cyclodextrins as absorption enhancers in nasal delivery of peptide drugs. J Control Release 1994;29:35l–360
  • Irie T, Wakamatsu K, Arima H, et al. Enhancing effects of cyclodextrins on nasal absorption of insulin in rats. Int J Pharm 1992;84:129–139
  • Jensen CEdM, Santos RASd, Denadai AML, et al. Pharmaceutical composition of valsartan: β-cyclodextrin: physico-chemical characterization and anti-hypertensive evaluation. Mol Cells 2010;15:4067–4084
  • Domingues ZR, Cortés ME, Gomes TA, et al. Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with β-cyclodextrin. Biomaterials 2004;25:327–333
  • Lu WL, Zhang Q, Zheng L, et al. Antipyretic, analgesic and anti-inflammatory activities of ketoprofen β-cyclodextrin inclusion complexes in animals. Biol Pharm Bull 2004;27:1515–1520
  • Dalmora ME, Dalmora SL, Oliveira AG. Inclusion complex of piroxicam with β-cyclodextrin and incorporation in cationic microemulsion. In vitro drug release and in vivo topical anti-inflammatory effect. Int J Pharm 2001;222:45–55
  • Choi H-G, Lee B-J, Han J-H, et al. Terfenadine-β-cyclodextrin inclusion complex with antihistaminic activity enhancement. Drug Dev Ind Pharm 2001;27:857–862
  • Chiarello E, Bernasconi S, Gugliotta B, Giannini S. Subcutaneous injection of diclofenac for the treatment of pain following minor orthopedic surgery (DIRECT study): a randomized trial. Pain Practice 2014:doi: 10.1111/papr.12140
  • Salomone S, Piazza C, Vitale DC, et al. Pharmacokinetics of a new subcutaneous diclofenac formulation administered to three body sites: quadriceps, gluteus, and abdomen. Int J Clin Pharmacol Ther 2014;52:129–134
  • Zeitlinger M, Rusca A, Oraha AZ, et al. Pharmacokinetics of a new diclofenac sodium formulation developed for subcutaneous and intramuscular administration. Int J Clin Pharmacol Ther 2012;50:383–390
  • Uehata K, Anno T, Hayashida K, et al. Effect of sulfobutyl ether-β-cyclodextrin on bioavailability of insulin glargine and blood glucose level after subcutaneous injection to rats. Int J Pharm 2011;419:71–76
  • Tokihiro K, Arima H, Tajiri S, et al. Improvement of subcutaneous bioavailability of insulin by sulphobutyl ether β-cyclodextrin in rats. J Pharm Pharmacol 2000;52:911–917
  • Sanz-Nebot V, Benavente F, Barbosa J. Separation and characterization of multicomponent peptide mixtures by liquid chromatography – electrospray ionization mass spectrometry. Application to crude products of the synthesis of leuprolide. J Chromatogr 2000;870:315–334
  • Yoshioka S, Stella VJ. Stability of drugs and dosage forms. New York: Kluwer Academic Publishers; 2002
  • Fransson J, FIorin-Robertsson E, Axelsson K, Nyhlén C. Oxidation of human insulin-like growth factor I in formulation studies: kinetics of methionine oxidation in aqueous solution and in solid state. Pharm Res 1996;13:1252–1257
  • Stratton LP, Kelly RM, Rowe J, et al. Controlling deamidation rates in a model peptide: effects of temperature, peptide concentration and additives. J Pharm Sci 2001;90:2141–2148
  • Wright TE. Sequence and structure determinants of the nonenzymatic deamidation of asparagine and glutamine residues in proteins. Protein Eng 1991;4:283–294
  • Lahiani-Skiba M, Boulet Y, Youm I, et al. Interaction between hydrophilic drug and α-cyclodextrins: physico-chemical aspects. J Incl Phenom Macrocycl Chem 2007;57:211–217
  • Correia I, Bezzenine N, Ronzani N, et al. Study of inclusion complexes of acridine with β- and (2,6-di-Omethyl)-β-cyclodextrin by use of solubility diagrams and NMR spectroscopy. J Phys Org Chem 2002;15:647–659
  • Menezes PP, Serafini MR, Santana BV, et al. Solid-state β-cyclodextrin complexes containing geraniol. Thermochim Acta 2012;548:45–50
  • Mohan PRK, Sreelakshmi G, Muraleedharan CV, Joseph R. Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vib Spectrosc 2012;62:77–84
  • Jiao H, Goh SH, Valiyaveettil S. Inclusion complexes of poly(neopentyl glycol sebacate) with cyclodextrins. Macromolecules 2001;34:8138–8142
  • Astaneh R, Nafissi-Varcheh N, Erfan M. Zinc-leuprolide complex: preparation, physicochemical characterization and release behaviour from in situ forming implant. J Pept Sci 2007;13:649–654
  • Sambasevam KP, Mohamad S, Sarih NM, Ismail NA. Synthesis and characterization of the inclusion complex of β-cyclodextrin and azomethine. Int J Mol Sci 2013;14:3671–3682
  • Li N, Liu J, Zhao X, et al. Complex formation of ionic liquid surfactant and β-cyclodextrin. Colloids Surf Physicochem Eng Aspects 2007;292:196–201
  • Stella V, Rao V, Zannou E, Zia V. Mechanisms of drug release from cyclodextrin complexes. Adv Drug Del Rev 1999;36:3–16
  • Giordano F, Novak C, Moyano JR. Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim Acta 2001;380:123–151
  • Kohata S, Jyodoi K, Ohyoshi A. Thermal decomposition of cyclodextrins (α-, β-, γ-, and modified β-CyD) and of metal – (β-CyD) complexes in the solid phase. Thermochim Acta 1993;217:187–198
  • Alcalá-Alcalá S, Urbán-Morlán Z, Aguilar-Rosas I, Quintanar-Guerrero D. biodegradable polymeric system for peptide-protein delivery assembled with porous microspheres and nanoparticles, using an adsorption/infiltration process. Int J Nanomed 2013;8:2141–2151

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.