506
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Solubility enhancement and in vitro evaluation of PEG-b-PLA micelles as nanocarrier of semi-synthetic andrographolide analogue for cholangiocarcinoma chemotherapy

, , , , , & show all
Pages 437-444 | Received 10 Dec 2014, Accepted 24 Jan 2015, Published online: 26 Aug 2015

References

  • Das B, Chowdhury C, Kumar D, et al. Synthesis, cytotoxicity, and structure–activity relationship (SAR) studies of andrographolide analogues as anti-cancer agent. Bioorg Med Chem Lett 2010;20:6947–6950
  • Sirion U, Kasemsook S, Suksen K, et al. New substituted C-19-andrographolide analogues with potent cytotoxic activities. Bioorg Med Chem Lett 2012;22:49–52
  • Bhummaphan N, Nateewattana J, Suksen K, et al. Induction of cholangiocarcinoma cells apoptosis by an andrographolide analog. Sci Res Essays 2013;8:26–31
  • Liebmann J, Cook J, Lipschultz C, et al. Cytotoxic studies of paclitaxel (Taxol) in human tumour cell lines. Br J Cancer 1993;68:1104
  • Hahnvajanawong C, Bhudisawadi V, Namwat N, et al. Comparative in vitro cytotoxicity of the generic and reference products of gemcitabine on various cancer cell lines. Srinagarind Med J 2013;26:2–8
  • Namwat N, Sripa B, Loilome W, et al. Comparison of Italic cytoxicity of generic paclitaxel and irinotecan formulations with their reference formulations on seven human intrahepatic cholangiocarcinoma cell lines. Srinagarind Med J 2013;22:230–234
  • Greco K, Bogner R. Solution-mediated phase transformation: significance during dissolution and implications for bioavailability. J Pharm Sci 2012;101:2996–3018
  • Sutton D, Wang S, Nasongkla N, et al. Doxorubicin and β-lapachone release and interaction with micellar core materials: experiment and modeling. Exp Biol Med 2007;232:1090–1099
  • Mohan P, Rapoport N. Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. Mol Pharm 2010;7:1959–1973
  • Serajuddin A. Salt formation to improve drug solubility. Adv Drug Deliv Rev 2007;59:603–616
  • Phuengkham H, Teeranachaideekul V, Chulasiri M, Nasongkla N. Preparation and optimization of chlorophene-loaded nanospheres as controlled release antimicrobial delivery systems. Pharm Dev Technol 2014:1–6. doi: 10.3109/10837450.2014.959180
  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001;47:113–131
  • Blanco E, Bey EA, Dong Y, et al. β-Lapachone-containing PEG–PLA polymer micelles as novel nanotherapeutics against NQO1-overexpressing tumor cells. J Control Release 2007;122:365–374
  • Cabral H, Matsumoto Y, Mizuno K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 2011;6:815–823
  • Dehghan Kelishady P, Saadat E, Ravar F, et al. Pluronic F127 polymeric micelles for co-delivery of paclitaxel and lapatinib against metastatic breast cancer: preparation, optimization and in vitro evaluation. Pharm Dev Technol 2014:1–9. doi: 10.3109/10837450.2014.965323
  • Khamlao W, Hongeng S, Sakdapipanich J, Nasongkla N. Preparation of self-solidifying polymeric depots from PLEC-PEG-PLEC triblock copolymers as an injectable drug delivery system. J Polym Res 2012;19:1–12
  • Qiu L, Zhang L, Zheng C, Wang R. Improving physicochemical properties and doxorubicin cytotoxicity of novel polymeric micelles by poly (ɛ-caprolactone) segments. J Pharm Sci 2011;100:2430–2442
  • Chen H, Khemtong C, Yang X, et al. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 2011;16:354–360
  • Ebrahimi E, Khandaghi AA, Valipour F, et al. In vitro study and characterization of doxorubicin-loaded magnetic nanoparticles modified with biodegradable copolymers. Artif Cells Nanomed Biotechnol 2014:1–9. doi: 10.3109/21691401.2014.968822
  • Nasongkla N, Shuai X, Ai H, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem 2004;116:6483–6487
  • Nasongkla N, Bey E, Ren J, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 2006;6:2427–2430
  • Theerasilp M, Nasongkla N. Comparative studies of poly (ɛ-caprolactone) and poly (D, L-lactide) as core materials of polymeric micelles. J Microencapsul 2012;30:390–397
  • Xiao RZ, Zeng ZW, Zhou GL, et al. Recent advances in PEG–PLA block copolymer nanoparticles. Int J Nanomed 2010;5:1057
  • Pozzi G, Ghetti P, Balsamo G, et al. Crystalline irinotecan hydrochloride and methods for the preparation thereof. US Patents. US 8,247,426 B2; Aug. 21; 2012:1–3
  • Cheng J, Teply BA, Sherifi I, et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007;28:869–876
  • Shuai X, Ai H, Nasongkla N, et al. Micellar carriers based on block copolymers of poly (ɛ-caprolactone) and poly (ethylene glycol) for doxorubicin delivery. J Control Release 2004;98:415–426
  • Uddin MN, Ahmed I, Roni MA, et al. In vitro release kinetics study of ranolazine from swellable hydrophilic matrix tablets. Dhaka Univ J Pharm Sci 2009;8:31–38
  • ChemAxon. Available from: http://www.chemaxon.com/products/marvin/ [last accessed 20 January 2015]
  • Mobarak DH, Salah S, Elkheshen SA. Formulation of ciprofloxacin hydrochloride loaded biodegradable nanoparticles: optimization of technique and process variables. Pharm Dev Technol 2013;19:891–900
  • Ye YQ, Chen FY, Wu Qa, et al. Enhanced cytotoxicity of core modified chitosan based polymeric micelles for doxorubicin delivery. J Pharm Sci 2009;98:704–712
  • Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med 2010;6:714–729
  • Ebrahim Attia AB, Ong ZY, Hedrick JL, et al. Mixed micelles self-assembled from block copolymers for drug delivery. Curr Opin Colloid Interface Sci 2011;16:182–194
  • Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 2007;65:259–269
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271–284
  • Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011;63:136–151
  • Lee J, Cho EC, Cho K. Incorporation and release behavior of hydrophobic drug in functionalized poly (D, L-lactide)-block–poly (ethylene oxide) micelles. J Control Release 2004;94:323–335
  • Cheng Z, Al Zaki A, Hui JZ, et al. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 2012;338:903–910
  • Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci 2003;92:1343–1355
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70:1–20
  • Gref R, Quellec P, Sanchez A, et al. Development and characterization of CyA-loaded poly (lactic acid)–poly (ethylene glycol) PEG micro-and nanoparticles. Comparison with conventional PLA particulate carriers. Eur J Pharm Biopharm 2001;51:111–118
  • Quellec P, Gref R, Dellacherie E, et al. Protein encapsulation within poly (ethylene glycol)-coated nanospheres. II. Controlled release properties. J Biomed Mater Res 1999;47:388–395
  • Wang Y, Wang C, Gong C, et al. Polysorbate 80 coated poly (ɛ-caprolactone)–poly (ethylene glycol)–poly (ɛ-caprolactone) micelles for paclitaxel delivery. Int J Pharm 2012;434:1–8
  • Li Y, Xu X, Shen Y, et al. Preparation and evaluation of copolymeric micelles with high paclitaxel contents and sustained drug release. Colloids Surf A Physicochem Eng Aspects 2013;429:12–18
  • Hashem FM, Nasr M, Khairy A. In vitro cytotoxicity and bioavailability of solid lipid nanoparticles containing tamoxifen citrate. Pharm Dev Technol 2013;19:824–832

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.