128
Views
19
CrossRef citations to date
0
Altmetric
Original Article

MDM2 and CDKN1A gene polymorphisms and risk of Kaposi’s sarcoma in African and Caucasian patients

, , , , , , , , , , , & show all
Pages 42-50 | Received 30 Aug 2010, Accepted 17 Sep 2010, Published online: 28 Oct 2010

References

  • Albert J, Fenyo EM. (1990). Simple, sensitive, and specific detection of human immunodeficiency virus type 1 in clinical specimens by polymerase chain reaction with nested primers. J Clin Microbiol 28:1560–4.
  • Arva NC, Gopen TR, Talbott KE, Campbell LE, Chicas A, White DE et al. (2005). A chromatin-associated and transcriptionally inactive p53-Mdm2 complex occurs in mdm2 SNP309 homozygous cells. J Biol Chem 280:26776–87.
  • Biggar RJ, Horm J, Lubin JH, Goedert JJ, Greene MH, Fraumeni JF Jr. (1985). Cancer trends in a population at risk of acquired immunodeficiency syndrome. J Natl Cancer Inst 74:793–7.
  • Birgander R, Sjalander A, Saha N, Spitsyn V, Beckman L, Beckman G. (1996). The codon 31 polymorphism of the p53-inducible gene p21 shows distinct differences between major ethnic groups. Hum Hered 46:148–54.
  • Bond GL, Hirshfield KM, Kirchhoff T, Alexe G, Bond EE, Robins H et al. (2006). MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res 66:5104–10.
  • Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC et al. (2004). A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602.
  • Boshoff C, Weiss RA. (2001). Epidemiology and pathogenesis of Kaposi’s sarcoma-associated herpesvirus. Philos Trans R Soc Lond B Biol Sci 356:517–34.
  • Bougeard G, Baert-Desurmont S, Tournier I, Vasseur S, Martin C, Brugieres L et al. (2006). Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome. J Med Genet 43:531–3.
  • Boulanger E, Marchio A, Hong SS, Pineau P. (2009). Mutational analysis of TP53, PTEN, PIK3CA and CTNNB1/beta-catenin genes in human herpesvirus 8-associated primary effusion lymphoma. Haematologica 94:1170–4.
  • Brown EE, Fallin MD, Goedert JJ, Chen R, Whitby D, Foster CB, et al. (2005). A common genetic variant in FCGR3A-V158F and risk of Kaposi sarcoma herpesvirus infection and classic Kaposi sarcoma. Cancer Epidemiol Biomarkers Prev 14:633–7.
  • Buonaguro FM, Tomesello ML, Buonaguro L, Satriano RA, Ruocco E, Castello G, et al. (2003). Kaposi’s sarcoma: aetiopathogenesis, histology and clinical features. J Eur Acad Dermatol Venereol 17:138–54.
  • Buonaguro FM, Tornesello ML, Beth-Giraldo E, Hatzakis A, Mueller N, Downing R, et al. (1996). Herpesvirus-like DNA sequences detected in endemic, classic, iatrogenic and epidemic Kaposi’s sarcoma (KS) biopsies. Int J Cancer 65:25–8.
  • Capasso M, Ayala F, Avvisati RA, Russo R, Gambale A, Mozzillo N, et al. (2010). MDM2 SNP309 and p53 Arg72Pro in cutaneous melanoma: association between SNP309 GG genotype and tumor Breslow thickness. J Hum Genet 55:518–24.
  • Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, et al. (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–9.
  • de Sanjose S, Mbisa G, Perez-Alvarez S, Benavente Y, Sukvirach S, Hieu NT, et al. (2009). Geographic variation in the prevalence of Kaposi sarcoma-associated herpesvirus and risk factors for transmission. J Infect Dis 199:1449–56.
  • Dedicoat M, Newton R. (2003). Review of the distribution of Kaposi’s sarcoma-associated herpesvirus (KSHV) in Africa in relation to the incidence of Kaposi’s sarcoma. Br J Cancer 88:1–3.
  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–25.
  • Freedman DA, Levine AJ. (1999). Regulation of the p53 protein by the MDM2 oncoprotein – thirty-eighth G.H.A. Clowes Memorial Award Lecture. Cancer Res 59:1–7.
  • Friborg J Jr, Kong W, Hottiger MO, Nabel GJ. (1999). p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402:889–94.
  • Gaidano G, Castanos-Velez E, Biberfeld P. (1999). Lymphoid disorders associated with HHV-8/KSHV infection: facts and contentions. Med Oncol 16:8–12.
  • Gottwein E, Cullen BR. (2010). A human herpesvirus microRNA inhibits p21 expression and attenuates p21-mediated cell cycle arrest. J Virol 84:5229–37.
  • Higuchi R. Simple and rapid preparation of samples for PCR. In: Erlich H, ed. PCR Technology: Principles and Applications for DNA Amplification. New York: Stockton Press, 1989. p. 31–8.
  • Hirata H, Hinoda Y, Kikuno N, Kawamoto K, Suehiro Y, Tanaka Y, et al. (2007). MDM2 SNP309 polymorphism as risk factor for susceptibility and poor prognosis in renal cell carcinoma. Clin Cancer Res 13:4123–9.
  • Hong Y, Miao X, Zhang X, Ding F, Luo A, Guo Y, et al. (2005). The role of P53 and MDM2 polymorphisms in the risk of esophageal squamous cell carcinoma. Cancer Res 65:9582–7.
  • Hu X, Zhang Z, Ma D, Huettner PC, Massad LS, Nguyen L, et al. (2010). TP53, MDM2, NQO1, and susceptibility to cervical cancer. Cancer Epidemiol Biomarkers Prev 19:755–61.
  • Hu Z, Jin G, Wang L, Chen F, Wang X, Shen H. (2007). MDM2 promoter polymorphism SNP309 contributes to tumor susceptibility: evidence from 21 case-control studies. Cancer Epidemiol Biomarkers Prev 16:2717–23.
  • Hutt MS, Burkitt D. (1965). Geographical distribution of cancer in East Africa: a new clinicopathological approach. Br Med J 2:719–22.
  • Jin S, Levine AJ. (2001). The p53 functional circuit. J Cell Sci 114:4139–40.
  • Kaposi M. (1872). Idiopathisches multiples pigment sarcoma de Haut. Arch Dermatol Syphil 4:265–7.
  • Katano H, Sato Y, Sata T. (2001). Expression of p53 and human herpesvirus-8 (HHV-8)-encoded latency-associated nuclear antigen with inhibition of apoptosis in HHV-8-associated malignancies. Cancer 92:3076–84.
  • Keshava C, Frye BL, Wolff MS, McCanlies EC, Weston A. (2002). Waf-1 (p21) and p53 polymorphisms in breast cancer. Cancer Epidemiol Biomarkers Prev 11:127–30.
  • Knappskog S, Chrisanthar R, Staalesen V, Borresen-Dale AL, Gram IT, Lillehaug JR, et al. (2007). Mutations and polymorphisms of the p21B transcript in breast cancer. Int J Cancer 121:908–10.
  • Leach FS, Tokino T, Meltzer P, Burrell M, Oliner JD, Smith S, et al. (1993). p53 Mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res 53:2231–4.
  • Lee HR, Toth Z, Shin YC, Lee JS, Chang H, Gu W, et al. (2009). Kaposi’s sarcoma-associated herpesvirus viral interferon regulatory factor 4 targets MDM2 to deregulate the p53 tumor suppressor pathway. J Virol 83:6739–47.
  • Lind H, Zienolddiny S, Ekstrom PO, Skaug V, Haugen A. (2006). Association of a functional polymorphism in the promoter of the MDM2 gene with risk of nonsmall cell lung cancer. Int J Cancer 119:718–21.
  • Mbulaiteye SM, Engels EA. (2006). Kaposi’s sarcoma risk among transplant recipients in the United States (1993–2003). Int J Cancer 119:2685–91.
  • Mendrysa SM, McElwee MK, Michalowski J, O’Leary KA, Young KM, Perry ME. (2003). Mdm2 is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol Cell Biol 23:462–72.
  • Menin C, Scaini MC, De Salvo GL, Biscuola M, Quaggio M, Esposito G, et al. (2006). Association between MDM2-SNP309 and age at colorectal cancer diagnosis according to p53 mutation status. J Natl Cancer Inst 98:285–8.
  • Michael D, Oren M. (2003). The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13:49–58.
  • Nador RG, Cesarman E, Chadburn A, Dawson DB, Ansari MQ, Sald J, et al. (1996). Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpes virus. Blood 88:645–56.
  • Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A, et al. (1995). p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267:1024–7.
  • Parkin DM, Ferlay J, Curado MP, Bray F, Edwards B, Shin HR, et al. (2010). Fifty years of cancer incidence: CI5 I-IX. Int J Cancer June 17 (Epub ahead of print).
  • Penn I. (1983). Kaposi’s sarcoma in immunosuppressed patients. J Clin Lab Immunol 12:1–10.
  • Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M. (2007). TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–65.
  • Petre CE, Sin SH, Dittmer DP. (2007). Functional p53 signaling in Kaposi’s sarcoma-associated herpesvirus lymphomas: implications for therapy. J Virol 81:1912–22.
  • Powell BL, van S, I Roosken, P, Grieu F, Berns EM, Iacopetta B. (2002). Associations between common polymorphisms in TP53 and p21WAF1/Cip1 and phenotypic features of breast cancer. Carcinogenesis 23:311–15.
  • Pyakurel P, Pak F, Mwakigonja AR, Kaaya E, Biberfeld P. (2007). KSHV/HHV-8 and HIV infection in Kaposi’s sarcoma development. Infect Agent Cancer 2:4.
  • Rayburn E, Zhang R, He J, Wang H. (2005). MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets 5:27–41.
  • Roh J, Kim M, Kim J, Park N, Song Y, Kang S, et al. (2001). Polymorphisms in codon 31 of p21 and cervical cancer susceptibility in Korean women. Cancer Lett 165:59–62.
  • Ruijs MW, Schmidt MK, Nevanlinna H, Tommiska J, Aittomaki K, Pruntel R, et al. (2007). The single-nucleotide polymorphism 309 in the MDM2 gene contributes to the Li-Fraumeni syndrome and related phenotypes. Eur J Hum Genet 15:110–14.
  • Ruocco V, Ruocco E, Schwartz RA, Janninger CK. (2010). Kaposi sarcoma and quinine: A potentially overlooked triggering factor in millions of Africans. J Am Acad Dermatol (in press).
  • Schwartz RA, Micali G, Nasca MR, Scuderi L. (2008). Kaposi sarcoma: a continuing conundrum. J Am Acad Dermatol 59:179–206.
  • Si H, Robertson ES. (2006). Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen induces chromosomal instability through inhibition of p53 function. J Virol 80:697–709.
  • Tornesello ML, Biryahwaho B, Downing R, Hatzakis A, Alessi E, Cusini M, et al. (2010). Human herpesvirus type 8 variants circulating in Europe, Africa and North America in classic, endemic and epidemic Kaposi’s sarcoma lesions during pre-AIDS and AIDS era. Virology 398:280–9.
  • Tornesello ML, Biryahwaho B, Downing R, Hatzakis A, Alessi E, Cusini M, et al. (2009). TP53 codon 72 polymorphism in classic, endemic and epidemic Kaposi’s sarcoma in African and Caucasian patients. Oncology 77:328–34.
  • Tornesello ML, Duraturo ML, Guida V, Losito S, Botti G, Pilotti S, et al. (2008). Analysis of TP53 codon 72 polymorphism in HPV-positive and HPV-negative penile carcinoma. Cancer Lett 269:159–64.
  • Tornesello ML, Waddell KM, Duraturo ML, Biryahwaho B, Downing R, Lucas SB, et al. (2005). TP53 codon 72 polymorphism and risk of conjunctival squamous cell carcinoma in Uganda. Cancer Detect Prev 29:501–8.
  • Whitby D, Marshall VA, Bagni RK, Miley WJ, McCloud TG, Hines-Boykin R, et al. (2007). Reactivation of Kaposi’s sarcoma-associated herpesvirus by natural products from Kaposi’s sarcoma endemic regions. Int J Cancer 120:321–8.
  • Wu MT, Wu DC, Hsu HK, Kao EL, Yang CH, Lee JM. (2003). Association between p21 codon 31 polymorphism and esophageal cancer risk in a Taiwanese population. Cancer Lett 201:175–80.
  • Xi YG, Ding KY, Su XL, Chen DF, You WC, Shen Y, et al. (2004). p53 polymorphism and p21WAF1/CIP1 haplotype in the intestinal gastric cancer and the precancerous lesions. Carcinogenesis 25:2201–6.
  • Yoon YJ, Chang HY, Ahn SH, Kim JK, Park YK, Kang DR, et al. (2008). MDM2 and p53 polymorphisms are associated with the development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection. Carcinogenesis 29:1192–6.
  • Zhang X, Miao X, Guo Y, Tan W, Zhou Y, Sun T, et al. (2006). Genetic polymorphisms in cell cycle regulatory genes MDM2 and TP53 are associated with susceptibility to lung cancer. Hum Mutat 27:110–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.