677
Views
82
CrossRef citations to date
0
Altmetric
Research Article

MicroRNA in Alzheimer’s disease: an exploratory study in brain, cerebrospinal fluid and plasma

, , , , , & show all
Pages 455-466 | Received 11 Apr 2013, Accepted 08 Jun 2013, Published online: 03 Jul 2013

References

  • Consensus recommendations for the postmortem diagnosis of Alzheimer's disease. (1997). The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Neurobiol Aging 18:S1–2
  • Abner EL, Kryscio RJ, Schmitt FA, et al. (2011). “End-stage” neurofibrillary tangle pathology in preclinical Alzheimer’s disease: fact or fiction? J Alzheimers Dis 25:445–53
  • Adilakshmi T, Sudol I, Tapinos N. (2012). Combinatorial action of miRNAs regulates transcriptional and post-transcriptional gene silencing following in vivo PNS injury. PLoS One 7:e39674 (1--14)
  • Aqeilan RI, Calin GA, Croce CM. (2010). miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17:215–20
  • Betel D, Koppal A, Agius P, et al. (2010). Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11:R90 (1--14)
  • Betel D, Wilson M, Gabow A, et al. (2008). The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–53
  • Bobinski M, Wegiel J, Tarnawski M, et al. (1997). Relationships between regional neuronal loss and neurofibrillary changes in the hippocampal formation and duration and severity of Alzheimer disease. J Neuropathol Exp Neurol 56:414–20
  • Boissonneault V, Plante I, Rivest S, Provost P. (2009). MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem 284:1971–81
  • Bonci D, Coppola V, Musumeci M, et al. (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14:1271–7
  • Breving K, Esquela-Kerscher A. (2010). The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol 42:1316–29
  • Calin GA, Dumitru CD, Shimizu M, et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–9
  • Carlsson J, Helenius G, Karlsson M, et al. (2010). Validation of suitable endogenous control genes for expression studies of miRNA in prostate cancer tissues. Cancer Genet Cytogenet 202:71–5
  • Chang KH, Mestdagh P, Vandesompele J, et al. (2010). MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer. BMC Cancer 10:173 (1--13)
  • Chang KW, Chu TH, Gong NR, et al. (2012). miR-370 modulates insulin receptor substrate-1 expression and inhibits the tumor phenotypes of oral carcinoma. Oral Dis 10:1–9
  • Cogswell JP, Ward J, Taylor IA, et al. (2008). Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14:27–41
  • Das S, Bryan K, Buckley PG, et al. (2013). Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs. Oncogene 32:2927–36
  • Davoren PA, McNeill RE, Lowery AJ, et al. (2008). Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Mol Biol 9:76 (1–11)
  • Delay C, Mandemakers W, Hebert SS. (2012). MicroRNAs in Alzheimer’s disease. Neurobiol Dis 46:285–90
  • Edbauer D, Neilson JR, Foster KA, et al. (2010). Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–84
  • Forlenza OV, Diniz BS, Gattaz WF. (2010). Diagnosis and biomarkers of predementia in Alzheimer’s disease. BMC Med 8:89 (1–14)
  • Fukutani Y, Kobayashi K, Nakamura I, et al. (1995). Neurons, intracellular and extracellular neurofibrillary tangles in subdivisions of the hippocampal cortex in normal ageing and Alzheimer’s disease. Neurosci Lett 200:57–60
  • Fuller S, Steele M, Munch G. (2010). Activated astroglia during chronic inflammation in Alzheimer’s disease – do they neglect their neurosupportive roles? Mutat Res 690:40–9
  • Gao W, He HW, Wang ZM, et al. (2012). Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids Health Dis 11:55 (1–8)
  • Garcia-Orti L, Cristobal I, Cirauqui C, et al. (2012). Integration of SNP and mRNA arrays with microRNA profiling reveals that MiR-370 is upregulated and targets NF1 in acute myeloid leukemia. PLoS One 7:e47717 (1–9)
  • Goldie BJ, Cairns MJ. (2012). Post-transcriptional trafficking and regulation of neuronal gene expression. Mol Neurobiol 45:99–108
  • Hebert SS, Nelson PT. (2012). Studying microRNAs in the brain: technical lessons learned from the first ten years. Exp Neurol 235:397–401
  • Humpel C. (2011). Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 29:26–32
  • Huntzinger E, Izaurralde E. (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110
  • Hyman BT, Phelps CH, Beach TG, et al. (2012). National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13
  • Iliopoulos D, Drosatos K, Hiyama Y, et al. (2010). MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res 51:1513–23
  • Jack CR Jr. (2012). Alzheimer disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology 263:344–61
  • John B, Enright AJ, Aravin A, et al. (2004). Human microRNA targets. PLoS Biol 2:e363 (1862–79)
  • Kawashima H, Numakawa T, Kumamaru E, et al. (2010). Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience 165:1301–11
  • Klein U, Lia M, Crespo M, et al. (2010). The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17:28–40
  • Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. (2012). microRNAs in cancer management. Lancet Oncol 13:e249–58
  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. (2001). Identification of novel genes coding for small expressed RNAs. Science 294:853–8
  • Lai CP, Breakefield XO. (2012). Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 3:228 (1–14)
  • Liu DZ, Ander BP, Tian Y, et al. (2012). Integrated analysis of mRNA and microRNA expression in mature neurons, neural progenitor cells and neuroblastoma cells. Gene 495:120–7
  • Luikart BW, Bensen AL, Washburn EK, et al. (2011). miR-132 mediates the integration of newborn neurons into the adult dentate gyrus. PLoS One 6:e19077 (1–14)
  • Magill ST, Cambronne XA, Luikart BW, et al. (2010). microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A 107:20382–7
  • Malumbres M. (2013). miRNAs and cancer: an epigenetics view. Mol Aspects Med 34:863–74
  • McKhann G, Drachman D, Folstein M, et al. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–44
  • Mehler MF, Mattick JS. (2006). Non-coding RNAs in the nervous system. J Physiol 575:333–41
  • Mirra SS, Heyman A, McKeel D, et al. (1991). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–86
  • Mitchell PS, Parkin RK, Kroh EM, et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–18
  • Mortensen RD, Serra M, Steitz JA, Vasudevan S. (2011). Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes (microRNPs). Proc Natl Acad Sci USA 108:8281–6
  • Mraz M, Malinova K, Mayer J, Pospisilova S. (2009). MicroRNA isolation and stability in stored RNA samples. Biochem Biophys Res Commun 390:1–4
  • Mulder C, Verwey NA, van der Flier WM, et al. (2010). Amyloid-beta(1-42), total tau, and phosphorylated tau as cerebrospinal fluid biomarkers for the diagnosis of Alzheimer disease. Clin Chem 56:248–53
  • Nelson PT, Wang WX, Rajeev BW. (2008a). MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18:130–8
  • Nelson PT, Wang WX, Wilfred BR, Tang G. (2008b). Technical variables in high-throughput miRNA expression profiling: much work remains to be done. Biochim Biophys Acta 1779:758–65
  • Nudelman AS, DiRocco DP, Lambert TJ, et al. (2010). Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus 20:492–8
  • Nunez-Iglesias J, Liu CC, Morgan TE, et al. (2010). Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS One 5:e8898 (1–9)
  • Olde Loohuis NF, Kos A, Martens GJ, et al. (2012). MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 69:89–102
  • Pathania M, Torres-Reveron J, Yan L, et al. (2012). miR-132 Enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons. PLoS One 7:e38174 (1–10)
  • Peskind ER, Riekse R, Quinn JF, et al. (2005). Safety and acceptability of the research lumbar puncture. Alzheimer Dis Assoc Disord 19:220–5
  • Peskind ER, Li G, Shofer J, et al. (2006). Age and apolipoprotein E*4 allele effects on cerebrospinal fluid beta-amyloid 42 in adults with normal cognition. Arch Neurol 63:936–9
  • Remenyi J, Hunter CJ, Cole C, et al. (2010). Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem J 428:281–91
  • Rossler M, Zarski R, Bohl J, Ohm TG. (2002). Stage-dependent and sector-specific neuronal loss in hippocampus during Alzheimer’s disease. Acta Neuropathol 103:363–9
  • Sato F, Tsuchiya S, Terasawa K, Tsujimoto G. (2009). Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PLoS One 4:e5540 (1–12)
  • Schipper HM, Maes OC, Chertkow HM, Wang E. (2007). MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Bio 1:263–74
  • Schneider JA, Arvanitakis Z, Bang W, Bennett DA. (2007). Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 69:2197–204
  • Sethi P, Lukiw WJ. (2009). Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett 459:100–4
  • Shaltiel G, Hanan M, Wolf Y, et al. (2012). Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct 218:59–72
  • Siegel G, Obernosterer G, Fiore R, et al. (2009). A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 11:705–16
  • Smith-Vikos T, Slack FJ. (2012). MicroRNAs and their roles in aging. J Cell Sci 125:7–17
  • Smith PY, Delay C, Girard J, et al. (2011). MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy. Hum Mol Genet 20:4016–24
  • Sonnen JA, Larson EB, Crane PK, et al. (2007). Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann Neurol 62:406–13
  • Srikantan S, Marasa BS, Becker KG, et al. (2011). Paradoxical microRNAs: individual gene repressors, global translation enhancers. Cell Cycle 10:751–9
  • Trojanowski JQ, Vandeerstichele H, Korecka M, et al. (2010). Update on the biomarker core of the Alzheimer’s Disease Neuroimaging Initiative subjects. Alzheimers Dement 6:230–8
  • van Harten AC, Kester MI, Visser PJ, et al. (2011). Tau and p-tau as CSF biomarkers in dementia: a meta-analysis. Clin Chem Lab Med 49:353–66
  • Wang WX, Huang Q, Hu Y, et al. (2011). Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121:193–205
  • Weber JA, Baxter DH, Zhang S, et al. (2010). The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–41
  • West MJ, Kawas CH, Stewart WF, et al. (2004). Hippocampal neurons in pre-clinical Alzheimer’s disease. Neurobiol Aging 25:1205–12
  • Wharton SB, O’Callaghan JP, Savva GM, et al. (2009). Population variation in glial fibrillary acidic protein levels in brain ageing: relationship to Alzheimer-type pathology and dementia. Dement Geriatr Cogn Disord 27:465–73
  • White L, Small BJ, Petrovitch H, et al. (2005). Recent clinical-pathologic research on the causes of dementia in late life: update from the Honolulu-Asia Aging Study. J Geriatr Psychiatry Neurol 18:224–7
  • Wu Z, Sun H, Zeng W, et al. (2012). Upregulation of mircoRNA-370 induces proliferation in human prostate cancer cells by downregulating the transcription factor FOXO1. PLoS One 7:e45825 (1–11)
  • Zen K, Zhang CY. (2012). Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev 32:326–48
  • Zhao BJ, Sun DG, Zhang M, et al. (2009). Identification of aberrant promoter methylation of EDNRB gene in esophageal squamous cell carcinoma. Dis Esophagus 22:55–61
  • Zhu H, Fan GC. (2011). Extracellular/circulating microRNAs and their potential role in cardiovascular disease. Am J Cardiovasc Dis 1:138–49

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.