1,214
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Chopping off the chondrocyte proteome

&
Pages 526-532 | Received 10 Aug 2014, Accepted 14 Aug 2014, Published online: 02 Sep 2014

References

  • Abella V, Scotece M, Conde J, et al. (2014). Adipokines, metabolic syndrome and rheumatic diseases. J Immunol Res 2014. doi:10.1155/2014/343746
  • Abramson S, Krasnokutsky S. (2006). Biomarkers in osteoarthritis. Bull NYU Hosp Jt Dis 64:77–81
  • Appleton CT, Pitelka V, Henry J, Beier F. (2007). Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum 56:1854–68
  • Ariyoshi W, Takahashi N, Hida D, et al. (2012). Mechanisms involved in enhancement of the expression and function of aggrecanases by hyaluronan oligosaccharides. Arthritis Rheum 64:187–97
  • Baici A, Horler D, Lang A, et al. (1995). Cathepsin B in osteoarthritis: zonal variation of enzyme activity in human femoral head cartilage. Ann Rheum Dis 54:281–8
  • Blanco FJ, Guitian R, Vazquez-Martul E, et al. (1998). Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum 41:284–9
  • Borzi RM, Mazzetti I, Cattini L, et al. (2000). Human chondrocytes express functional chemokine receptors and release matrix-degrading enzymes in response to C-X-C and C-C chemokines. Arthritis Rheum 43:1734–41
  • Brady MA, Waldman SD, Ethier CR. (2014). The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis (part I: cellular response). Tissue Eng Part B Rev . [Epub ahead of print]. PMID: 24919456
  • Burrage PS, Mix KS, Brinckerhoff CE. (2006). Matrix metalloproteinases: role in arthritis. Front Biosci 11:529–43
  • Caglic D, Repnik U, Jedeszko C, et al. (2013). The proinflammatory cytokines interleukin-1alpha and tumor necrosis factor alpha promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes. Biol Chem 394:307–16
  • Chalkiadaki A, Guarente L. (2012). High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab 16:180–8
  • Charni N, Juillet F, Garnero P. (2005). Urinary type II collagen helical peptide (HELIX-II) as a new biochemical marker of cartilage degradation in patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 52:1081–90
  • Cirman T, Oresic K, Mazovec GD, et al. (2004). Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279:3578–87
  • De Croos JN, Dhaliwal SS, Grynpas MD, et al. (2006). Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix Biol 25:323–31
  • Deberg M, Labasse A, Christgau S, (2005a). New serum biochemical markers (Coll 2-1 and Coll 2-1 NO2) for studying oxidative-related type II collagen network degradation in patients with osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 13:258–65
  • Deberg MA, Labasse AH, Collette J, et al. (2005b). One-year increase of Coll 2-1, a new marker of type II collagen degradation, in urine is highly predictive of radiological OA progression. Osteoarthritis Cartilage 13:1059–65
  • Dejica VM, Mort JS, Laverty S, et al. (2012). Increased type II collagen cleavage by cathepsin K and collagenase activities with aging and osteoarthritis in human articular cartilage. Arthritis Res Ther 14:R113. doi: 10.1186/ar3839
  • Del Carlo M, Schwartz D, Erickson EA, Loeser RF. (2007). Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments. Free Radic Biol Med 42:1350–8
  • Demircan K, Hirohata S, Nishida K, et al. (2005). ADAMTS-9 is synergistically induced by interleukin-1beta and tumor necrosis factor alpha in OUMS-27 chondrosarcoma cells and in human chondrocytes. Arthritis Rheum 52:1451–60
  • Duncan EM, Muratore-Schroeder TL, Cook RG, et al. (2008). Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135:284–94
  • Dvir-Ginzberg M, Gagarina V, Lee EJ, Hall DJ. (2008). Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem 283:36300–10
  • Dvir-Ginzberg M, Gagarina V, Lee EJ, et al. (2011). Tumor necrosis factor alpha-mediated cleavage and inactivation of SirT1 in human osteoarthritic chondrocytes. Arthritis Rheum 63:2363–73
  • Dvir-Ginzberg M, Steinmeyer J. (2013). Towards elucidating the role of SirT1 in osteoarthritis. Front Biosci (Landmark Ed) 18:343–55
  • Echtermeyer F, Bertrand J, Dreier R, et al. (2009). Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med 15:1072–6
  • El Mabrouk M, Sylvester J, Zafarullah M. (2007). Signaling pathways implicated in oncostatin M-induced aggrecanase-1 and matrix metalloproteinase-13 expression in human articular chondrocytes. Biochim Biophys Acta 1773:309–20
  • Eyre DR, Weis MA. (2009). The Helix-II epitope: a cautionary tale from a cartilage biomarker based on an invalid collagen sequence. Osteoarthritis Cartilage 17:423–6
  • Fitzgerald ML, Wang Z, Park PW, et al. (2000). Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol 148:811–24
  • Fosang AJ, Beier F. (2011). Emerging frontiers in cartilage and chondrocyte biology. Best Pract Res Clin Rheumatol 25:751–66
  • Fosang AJ, Rogerson FM, East CJ, Stanton H. (2008). ADAMTS-5: the story so far. Eur Cell Mater 15:11–26
  • Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. (2009). The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–7
  • Gabay O, Oppenhiemer H, Meir H, et al. (2012). Increased apoptotic chondrocytes in articular cartilage from adult heterozygous SirT1 mice. Ann Rheum Dis 71:613–16
  • Gabay O, Zaal KJ, Sanchez C, et al. (2013). Sirt1-deficient mice exhibit an altered cartilage phenotype. Joint Bone Spine 80:613–20
  • Garvican ER, Vaughan-Thomas A, Clegg PD, Innes JF. (2010). Biomarkers of cartilage turnover. Part 2: Non-collagenous markers. Vet J 185:43–9
  • Germaschewski FM, Matheny CJ, Larkin J, et al. (2014). Quantitation OF ARGS aggrecan fragments in synovial fluid, serum and urine from osteoarthritis patients. Osteoarthritis Cartilage 22:690–7
  • Goldring SR, Goldring MB. (2006). Clinical aspects, pathology and pathophysiology of osteoarthritis. J Musculoskelet Neuronal Interact 6:376–8
  • Guicciardi ME, Deussing J, Miyoshi H, et al. (2000). Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106:1127–37
  • Handley CJ, Mok MT, Ilic MZ, et al. (2001). Cathepsin D cleaves aggrecan at unique sites within the interglobular domain and chondroitin sulfate attachment regions that are also cleaved when cartilage is maintained at acid pH. Matrix Biol 20:543–53
  • Iannone F, Lapadula G. (2003). The pathophysiology of osteoarthritis. Aging Clin Exp Res 15:364–72
  • Karsdal MA, Woodworth T, Henriksen K, et al. (2011). Biochemical markers of ongoing joint damage in rheumatoid arthritis--current and future applications, limitations and opportunities. Arthritis Res Ther 13:215. doi: 10.1186/ar3280
  • Kim HA, Cho ML, Choi HY, et al. (2006). The catabolic pathway mediated by toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheum 54:2152–63
  • Kim HA, Suh DI, Song YW. (2001). Relationship between chondrocyte apoptosis and matrix depletion in human articular cartilage. J Rheumatol 28:2038–45
  • Konttinen YT, Mandelin J, Li TF, et al. (2002). Acidic cysteine endoproteinase cathepsin K in the degeneration of the superficial articular hyaline cartilage in osteoarthritis. Arthritis Rheum 46:953–60
  • Kumar R, Chaterjee P, Sharma PK, et al. (2013). Sirtuin1: a promising serum protein marker for early detection of Alzheimer's disease. PLoS One 8:e61560
  • Lambert C, Dubuc JE, Montell E, et al. (2014). Gene expression pattern of cells from inflamed and normal areas of osteoarthritis synovial membrane. Arthritis Rheumatol 66:960–8
  • Li Y, Frank EH, Wang Y, et al. (2013). Moderate dynamic compression inhibits pro-catabolic response of cartilage to mechanical injury, tumor necrosis factor-alpha and interleukin-6, but accentuates degradation above a strain threshold. Osteoarthritis Cartilage 21:1933–41
  • Little CB, Barai A, Burkhardt D, et al. (2009). Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 60:3723–33
  • Litwic A, Edwards MH, Dennison EM, Cooper C. (2013). Epidemiology and burden of osteoarthritis. Br Med Bull 105:185–99
  • Majumdar MK, Askew R, Schelling S, et al. (2007). Double-knockout of ADAMTS-4 and ADAMTS-5 in mice results in physiologically normal animals and prevents the progression of osteoarthritis. Arthritis Rheum 56:3670–4
  • Manicourt DH, Poilvache P, Van Egeren A, et al. (2000). Synovial fluid levels of tumor necrosis factor alpha and oncostatin M correlate with levels of markers of the degradation of crosslinked collagen and cartilage aggrecan in rheumatoid arthritis but not in osteoarthritis. Arthritis Rheum 43:281–8
  • Matsuo M, Nishida K, Yoshida A, et al. (2001). Expression of caspase-3 and -9 relevant to cartilage destruction and chondrocyte apoptosis in human osteoarthritic cartilage. Acta Med Okayama 55:333–40
  • Mengshol JA, Vincenti MP, Brinckerhoff CE. (2001). IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways. Nucleic Acids Res 29:4361–72
  • Mengshol JA, Vincenti MP, Coon CI, et al. (2000). Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum 43:801–11
  • Mort JS, Magny MC, Lee ER. (1998). Cathepsin B: an alternative protease for the generation of an aggrecan ‘metalloproteinase’ cleavage neoepitope. Biochem J 335:491–4
  • Nagaya H, Ymagata T, Ymagata S, et al. (1999). Examination of synovial fluid and serum hyaluronidase activity as a joint marker in rheumatoid arthritis and osteoarthritis patients (by zymography). Ann Rheum Dis 58:186–8
  • Oppenheimer H, Gabay O, Meir H, et al. (2012). 75-kd sirtuin 1 blocks tumor necrosis factor alpha-mediated apoptosis in human osteoarthritic chondrocytes. Arthritis Rheum 64:718–28
  • Oppenheimer H, Kumar A, Meir H, et al. (2014). Set7/9 impacts COL2A1 expression through binding and repression of SirT1 histone deacetylation. J Bone Miner Res 29:348–60
  • Panwar P, Du X, Sharma V, et al. (2013). Effects of cysteine proteases on the structural and mechanical properties of collagen fibers. J Biol Chem 288:5940–50
  • Raizman I, De Croos JN, St-Pierre JP, et al. (2009). Articular cartilage subpopulations respond differently to cyclic compression in vitro. Tissue Eng A 15:3789–98
  • Rousseau JC, Delmas PD. (2007). Biological markers in osteoarthritis. Nat Clin Pract Rheumatol 3:346–56
  • Sakai T, Kambe F, Mitsuyama H, et al. (2001). Tumor necrosis factor alpha induces expression of genes for matrix degradation in human chondrocyte-like HCS-2/8 cells through activation of NF-kappaB: abrogation of the tumor necrosis factor alpha effect by proteasome inhibitors. J Bone Miner Res 16:1272–80
  • Salminen-Mankonen HJ, Morko J, Vuorio E. (2007). Role of cathepsin K in normal joints and in the development of arthritis. Curr Drug Targets 8:315–23
  • Solau-Gervais E, Zerimech F, Lemaire R, et al. (2007). Cysteine and serine proteases of synovial tissue in rheumatoid arthritis and osteoarthritis. Scand J Rheumatol 36:373–7
  • Spiteri C, Raizman I, Pilliar RM, Kandel RA. (2010). Matrix accumulation by articular chondrocytes during mechanical stimulation is influenced by integrin-mediated cell spreading. J Biomed Mater Res A 94:122–9
  • Stanton H, Rogerson FM, East CJ, et al. (2005). ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434:648–52
  • Sylvester J, Liacini A, Li WQ, Zafarullah M. (2004). Interleukin-17 signal transduction pathways implicated in inducing matrix metalloproteinase-3, -13 and aggrecanase-1 genes in articular chondrocytes. Cell Signal 16:469–76
  • Troeberg L, Nagase H. (2012). Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 1824:133–45
  • Tschopp J, Schroder K. (2010). NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10:210–15
  • Yuan GH, Masuko-Hongo K, Sakata M, et al. (2001). The role of C-C chemokines and their receptors in osteoarthritis. Arthritis Rheum 44:1056–70