1,715
Views
62
CrossRef citations to date
0
Altmetric
Review Article

The metabolomics of airway diseases, including COPD, asthma and cystic fibrosis

, , , &
Pages 5-16 | Received 22 Aug 2014, Accepted 29 Oct 2014, Published online: 18 Nov 2014

References

  • Accordino R, Visentin A, Bordin A, et al. (2008). Long-term repeatability of exhaled breath condensate pH in asthma. Respir Med 102:377–81
  • Agustí AG, Sauleda J, Miralles C, et al. (2002). Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166:485–9
  • Aliverti A, MacKlem PT. (2008). The major limitation to exercise performance in COPD is inadequate energy supply to the respiratory and locomotor muscles. J Appl Physiol 105:749–51
  • Arakaki AK, Skolnick J, McDonald JF. (2008). Marker metabolites can be therapeutic targets as well. Nature 456:443
  • Bala L, Ghoshal UC, Ghoshal U, et al. (2006). Malabsorption syndrome with and without small intestinal bacterial overgrowth: a study on upper-gut aspirate using 1H NMR spectroscopy. Magn Resonan Med 56:738–44
  • Ballatori N, Krance SM, Notenboom S, et al. (2009). Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390:191–214
  • Baritussio A. (2004). Lung surfactant, asthma, and allergens: a story in evolution. Am J Respir Crit Care Med 169:550–1
  • Beckonert O, Keun HC, Ebbels TM, et al. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–703
  • Bekier E, Wyczółkowska J, Szyc H, Maśliński C. (1974). The inhibitory effect of nicotinamide on asthma-like symptoms and eosinophilia in guinea pigs, anaphylactic mast cell degranulation in mice, and histamine release from rat isolated peritoneal mast cells by compound 48/80. Int Arch Allergy Immunol 47:737–48
  • Bertini I, Luchinat C, Miniati M, et al. (2013). Phenotyping COPD by 1H NMR metabolomics of exhaled breath condensate. Metabolomics 10:302–11
  • Boisvert F-M, Richard S. (2004). Arginine methylation regulates the cytokine response. Mol Cell 15:492–4
  • Bollard ME, Stanley EG, Lindon JC, et al. (2005). NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed 18:143–62
  • Burgel P-R, Montani D, Danel C, et al. (2007). A morphometric study of mucins and small airway plugging in cystic fibrosis. Thorax 62:153–61
  • Burgel P, De Blic J, Chanez P, et al. (2009). Update on the roles of distal airways in asthma. Eur Respir Rev 18:80–95
  • Cap P, Chládek J, Pehal F, et al. (2004). Gas chromatography/mass spectrometry analysis of exhaled leukotrienes in asthmatic patients. Thorax 59:465–70
  • Carraro S, Rezzi S, Reniero F, et al. (2007). Metabolomics applied to exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med 175:986–90
  • Castellani C, Cuppens H, Macek Jr M, et al. (2008). Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cystic Fibrosis 7:179–96
  • Clayton TA, Lindon JC, Cloarec O, et al. (2006). Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 440:1073–7
  • Centers for Disease Control and Prevention (CDC). (2011). Vital signs: asthma prevalence, disease characteristics, and self-management education: United States, 2001–2009. MMWR Morb Mortal Wkly Rep 60:547
  • Corraliza IM, Soler G, Eichmann K, Modolell M. (1995). Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochem Biophys Res Commun 206:667–73
  • Crocker GH, Toth B, Jones JH. (2013). Combined effects of inspired oxygen, carbon dioxide, and carbon monoxide on oxygen transport and aerobic capacity. J Appl Physiol 115:643–52
  • Czebe K, Barta I, Antus B, et al. (2008). Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations. Respir Med 102:720–5
  • Dallinga JW, Robroeks CM, Van Berkel JJ, et al. (2010). Volatile organic compounds in exhaled breath as a diagnostic tool for asthma in children. Clin Exp Allergy 40:68–76
  • De Laurentiis G, Paris D, Melck D, et al. (2008). Metabonomic analysis of exhaled breath condensate in adults by nuclear magnetic resonance spectroscopy. Eur Respir J 32:1175–83
  • Debigare R, Cote CH, Maltais F. (2001). Peripheral muscle wasting in chronic obstructive pulmonary disease: clinical relevance and mechanisms. Am J Respir Crit Care Med 164:1712–17
  • Ellis DI, Dunn WB, Griffin JL, et al. (2007). Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8:1243–66
  • Erzurum SC, Gaston BM. (2012). Biomarkers in asthma: a real hope to better manage asthma. Clin Chest Med 33:459–71
  • Fahy JV, Dickey BF. (2010). Airway mucus function and dysfunction. N Engl J Med 363:2233–47
  • Fathi F, Ektefa F, Oskouie AA, et al. (2013a). NMR based metabonomics study on celiac disease in the blood serum. Gastroenterol Hepatol Bed Bench 6:190--4
  • Fathi F, Kasmaee LM, Sohrabzadeh K, et al. (2014a). The differential diagnosis of Crohn’s disease and celiac disease using nuclear magnetic resonance spectroscopy. Appl Magn Reson 45:451–9
  • Fathi F, Majari-Kasmaee L, Mani-Varnosfaderani A, et al. (2014b). 1H NMR based metabolic profiling in Crohn’s disease by random forest methodology. Magn Reson Chem 52:370–6
  • Fathi F, Oskouie AA, Tafazzoli M, et al. (2013b). Metabonomics based NMR in Crohn’s disease applying PLS-DA. Gastroenterol Hepatol Bed Bench 6:S82--S86
  • Flume PA, Mogayzel Jr PJ, Robinson KA, et al. (2010). Cystic fibrosis pulmonary guidelines: pulmonary complications: hemoptysis and pneumothorax. Am J Respir Crit Care Med 182:298–306
  • Fogarty A, Britton J. (2000). The role of diet in the aetiology of asthma. Clin Exp Allergy 30:615–27
  • Forsythe IJ, Wishart DS. (2009). Exploring human metabolites using the human metabolome database. Curr Protoc Bioinformatics 25:14.8.1–14.8.45
  • Freedman SD, Blanco PG, Zaman MM, et al. (2004). Association of cystic fibrosis with abnormalities in fatty acid metabolism. N Engl J Med 350:560–9
  • Gahleitner F, Guallar-Hoyas C, Beardsmore CS, et al. (2013). Metabolomics pilot study to identify volatile organic compound markers of childhood asthma in exhaled breath. Bioanalysis 5:2239–47
  • Godet C, Hira M, Adoun M, et al. (2001). Rapid diagnosis of alcoholic ketoacidosis by proton NMR. Intensive Care Med 27:785–6
  • Gonen B, O’Donnell P, Post T, et al. (1987). Very low density lipoproteins (VLDL) trigger the release of histamine from human basophils. Biochim Biophys Acta (BBA) Lipids Lipid Metab 917:418–24
  • Gowda GN, Ijare OB, Somashekar B, et al. (2006). Single-step analysis of individual conjugated bile acids in human bile using 1H NMR spectroscopy. Lipids 41:591–603
  • Griffin JL, Kauppinen RA. (2007). Tumour metabolomics in animal models of human cancer. J Proteome Res 6:498–505
  • Ho WE, Xu YJ, Xu F, et al. (2013). Metabolomics reveals altered metabolic pathways in experimental asthma. Am J Respir Cell Mol Biol 48:204–11
  • Hogg JC. (2004). Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 364:709–21
  • Horvath I, Hunt J, Barnes P. (2005). Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 26:523–48
  • Hudson VM. (2001). Rethinking cystic fibrosis pathology: the critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation. Free Radic Biol Med 30:1440–61
  • Hudson VM. (2004). New insights into the pathogenesis of cystic fibrosis. Treat Respir Med 3:353–63
  • Ibrahim B, Marsden P, Smith J, et al. (2013). Breath metabolomic profiling by nuclear magnetic resonance spectroscopy in asthma. Allergy 68:1050–6
  • Izquierdo-García JL, Puerto-Nevado L, Peces-Barba G, et al. (2010). A metabonomic approach to evaluate COPD in a model of cigarette smoke exposure in mice. Metabolomics 6:564–73
  • Joseloff E, Sha W, Bell SC, et al. (2014). Serum metabolomics indicate altered cellular energy metabolism in children with cystic fibrosis. Pediatr Pulmonol 49:463–72
  • Jung J, Kim SH, Lee HS, et al. (2013). Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clin Exp Allergy 43:425–33
  • Kharitonov SA, Barnes PJ. (2001). Exhaled markers of inflammation. Curr Opin Allergy Clin Immunol 1:217–24
  • Kim M-A, Shin YS, Pham LD, Park H-S. (2014). Adult asthma biomarkers. Curr Opin Allergy Clin Immunol 14:49–54
  • Knuffman JE, Sorkness CA, Lemanske Jr RF, et al. (2009). Phenotypic predictors of long-term response to inhaled corticosteroid and leukotriene modifier therapies in pediatric asthma. J Allergy Clin Immunol 123:411–16
  • Kullmann T, Barta I, Antus B, et al. (2008). Environmental temperature and relative humidity influence exhaled breath condensate pH. Eur Respir J 31:474–5
  • Lacey ME, Subramanian R, Olson DL, et al. (1999). High-resolution NMR spectroscopy of sample volumes from 1 nL to 10 μL. Chem Rev 99:3133–52
  • Lara A, Khatri SB, Wang Z, et al. (2008). Alterations of the arginine metabolome in asthma. Am J Respir Crit Care Med 178:673–81
  • Lindon JC. (2003). HPLC–NMR–MS: past, present and future. Drug Discov Today 8:1021–2
  • MacEachran DP, Ye S, Bomberger JM, et al. (2007). The Pseudomonas aeruginosa secreted protein PA2934 decreases apical membrane expression of the cystic fibrosis transmembrane conductance regulator. Infect Immun 75:3902–12
  • Mador MJ, Bozkanat E. (2001). Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Respir Res 2:216--24
  • Major HJ, Williams R, Wilson AJ, Wilson ID. (2006). A metabonomic analysis of plasma from Zucker rat strains using gas chromatography/mass spectrometry and pattern recognition. Rapid Commun Mass Spectrom 20:3295–302
  • Maniscalco M, De Laurentiis G, Pentella C, et al. (2006). Exhaled breath condensate as matrix for toluene detection: a preliminary study. Biomarkers 11:233–40
  • Mathers CD, Loncar D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442
  • Mattarucchi E, Baraldi E, Guillou C. (2012). Metabolomics applied to urine samples in childhood asthma; differentiation between asthma phenotypes and identification of relevant metabolites. Biomed Chromatogr 26:89–94
  • McClay JL, Adkins DE, Isern NG, et al. (2010). 1H nuclear magnetic resonance metabolomics analysis identifies novel urinary biomarkers for lung function. J Proteome Res 9:3083–90
  • Mehta A, Arora N, Gaur S, Singh B. (2009). Choline supplementation reduces oxidative stress in mouse model of allergic airway disease. Eur J Clin Investig 39:934–41
  • Mehta AK, Singh BP, Arora N, Gaur SN. (2010). Choline attenuates immune inflammation and suppresses oxidative stress in patients with asthma. Immunobiology 215:527–34
  • Mena-Bravo A, Luque De Castro M. (2014). Sweat: a sample with limited present applications and promising future in metabolomics. J Pharm Biomed Anal 90:139–47
  • Modolell M, Corraliza IM, Link F, et al. (1995). Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH 1 and TH 2 cytokines. Eur J Immunol 25:1101–4
  • Montuschi P, Paris D, Melck D, et al. (2012). NMR spectroscopy metabolomic profiling of exhaled breath condensate in patients with stable and unstable cystic fibrosis. Thorax 67:222–8
  • Nicholson JK, Lindon JC. (2008). Systems biology: metabonomics. Nature 455:1054–6
  • Paige M, Burdick MD, Kim S, et al. (2011). Pilot analysis of the plasma metabolite profiles associated with emphysematous Chronic Obstructive Pulmonary Disease phenotype. Biochem Biophys Res Commun 413:588–93
  • Puente-Maestu L, Perez-Parra J, Godoy R, et al. (2009). Abnormal mitochondrial function in locomotor and respiratory muscles of COPD patients. Eur Respir J 33:1045–52
  • Raftery D. (2004). High-throughput NMR spectroscopy. Anal Bioanal Chem 378:1403–4
  • Robroeks CM, van Berkel JJ, Dallinga JW, et al. (2010). Metabolomics of volatile organic compounds in cystic fibrosis patients and controls. Pediatr Res 68:75–80
  • Rodríguez DA, Alcarraz-Vizán G, Díaz-Moralli S, et al. (2011). Plasma metabolic profile in COPD patients: effects of exercise and endurance training. Metabolomics 8:508–16
  • Saliba A, Nascimento D, Silva M, et al. (2005). Eicosanoid-mediated proinflammatory activity of Pseudomonas aeruginosa ExoU. Cell Microbiol 7:1811–22
  • Sato H, Feix JB, Hillard CJ, Frank DW. (2005). Characterization of phospholipase activity of the Pseudomonas aeruginosa type III cytotoxin, ExoU. J Bacteriol 187:1192–5
  • Saude EJ, Lacy P, Musat-Marcu S, et al. (2004). NMR analysis of neutrophil activation in sputum samples from patients with cystic fibrosis. Magn Reson Med 52:807–14
  • Saude EJ, Obiefuna IP, Somorjai RL, et al. (2009). Metabolomic biomarkers in a model of asthma exacerbation: urine nuclear magnetic resonance. Am J Respir Crit Care Med 179:25–34
  • Saude EJ, Skappak CD, Regush S, et al. (2011). Metabolomic profiling of asthma: diagnostic utility of urine nuclear magnetic resonance spectroscopy. J Allergy Clin Immunol 127:757–64.e1–6
  • Servetnyk Z, Krjukova J, Gaston B, et al. (2006). Activation of chloride transport in CF airway epithelial cell lines and primary CF nasal epithelial cells by S-nitrosoglutathione. Respir Res 7:124
  • Slupsky CM, Cheypesh A, Chao DV, et al. (2009). Streptococcus pneumoniae and Staphylococcus aureus pneumonia induce distinct metabolic responses. J Proteome Res 8:3029–36
  • Sofia M, Maniscalco M, De Laurentiis G, et al. (2011). Exploring airway diseases by NMR-based metabonomics: a review of application to exhaled breath condensate. J Biomed Biotechnol 2011:403260
  • Soga T. (2007). Capillary electrophoresis-mass spectrometry for metabolomics. Methods Mol Biol 358:129–37
  • Tiddens HA, Donaldson SH, Rosenfeld M, Pare PD. (2010). Cystic fibrosis lung disease starts in the small airways: can we treat it more effectively? Pediatr Pulmonol 45:107–17
  • Tom A, Nair KS. (2006). Assessment of branched-chain amino acid status and potential for biomarkers. J Nutr 136:324S–30S
  • Twomey KB, O’Connell OJ, McCarthy Y, et al. (2011). Bacterial cis-2-unsaturated fatty acids found in the cystic fibrosis airway modulate virulence and persistence of Pseudomonas aeruginosa. ISME J 6:939–50
  • Ubhi BK, Cheng KK, Dong J, et al. (2012a). Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with COPD. Mol Biosyst 8:3125–33
  • Ubhi BK, Riley JH, Shaw PA, et al. (2012b). Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur Respir J 40:345–55
  • van der Greef J, Smilde AK. (2005). Symbiosis of chemometrics and metabolomics: past, present, and future. J Chemometr 19:376–86
  • Vance RE, Hong S, Gronert K, et al. (2004). The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase. Proc Natl Acad Sci USA 101:2135–9
  • Vestbo J, Anderson W, Coxson HO, et al. (2008). Evaluation of COPD longitudinally to identify predictive surrogate end-points (ECLIPSE). Eur Respir J 31:869–73
  • Villas-Boas SG, Mas S, Åkesson M, et al. (2005). Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24:613–46
  • Waddell JA, Emerson PA, Gunstone R. (1967). Hypoxia in bronchial asthma. Br Med J 2:402
  • Wang T, Carroll W, Lenny W, et al. (2006). The analysis of 1-propanol and 2-propanol in humid air samples using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 20:125–30
  • Wetmore DR, Joseloff E, Pilewski J, et al. (2010). Metabolomic profiling reveals biochemical pathways and biomarkers associated with pathogenesis in cystic fibrosis cells. J Biol Chem 285:30516–22
  • Wilson ID, Nicholson JK, Castro-Perez J, et al. (2005a). High resolution “ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J Proteome Res 4:591–8
  • Wilson ID, Plumb R, Granger J, et al. (2005b). HPLC-MS-based methods for the study of metabonomics. J Chromatogr B 817:67–76
  • Wolak JE, Esther CR Jr, O’Connell TM. (2009). Metabolomic analysis of bronchoalveolar lavage fluid from cystic fibrosis patients. Biomarkers 14:55–60
  • Wouters EF, Reynaert NL, Dentener MA, Vernooy JH. (2009). Systemic and local inflammation in asthma and chronic obstructive pulmonary disease: is there a connection? Proc Am Thorac Soc 6:638–47
  • Yang J, Eiserich JP, Cross CE, et al. (2012). Metabolomic profiling of regulatory lipid mediators in sputum from adult cystic fibrosis patients. Free Radic Biol Med 53:160–71
  • Young V, Munro H. (1978). Ntau-methylhistidine (3-methylhistidine) and muscle protein turnover: an overview. Fed Proc 37:2291–300
  • Zaman K, Carraro S, Doherty J, et al. (2006). S-nitrosylating agents: a novel class of compounds that increase cystic fibrosis transmembrane conductance regulator expression and maturation in epithelial cells. Mol Pharmacol 70:1435–42
  • Zhang A, Sun H, Wang P, et al. (2012). Modern analytical techniques in metabolomics analysis. Analyst 137:293–300
  • Zhang X, Wei D, Yap Y, et al. (2007). Mass spectrometry-based “omics” technologies in cancer diagnostics. Mass Spectrom Rev 26:403–31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.