1,851
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Label-free proteomic analysis of the hydrophobic membrane protein complement in articular chondrocytes: a technique for identification of membrane biomarkers

, , , &
Pages 572-589 | Received 24 Sep 2015, Accepted 17 Oct 2015, Published online: 10 Feb 2016

References

  • Aigner T, Cook JL, Gerwin N, et al. (2010). Histopathology atlas of animal model systems – overview of guiding principles. Osteoarthritis Cartilage 18 Suppl 3:S2–6
  • Almen MS, Nordstrom KJ, Fredriksson R, Schioth HB. (2009). Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50
  • Archer CW, Francis-West P. (2003). The chondrocyte. Int J Biochem Cell Biol 35:401–4
  • Barrett-Jolley R, Lewis R, Fallman R, Mobasheri A. (2010). The emerging chondrocyte channelome. Front Physiol 1:135
  • Benz R. (1994). Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins. Biochim Biophys Acta 1197:167–96
  • Bordier C. (1981). Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–7
  • Capra E, Beretta R, Parazzi V, et al. (2012). Changes in the proteomic profile of adipose tissue-derived mesenchymal stem cells during passages. Proteome Sci 10:46
  • Cecil DL, Terkeltaub R. (2008). Transamidation by transglutaminase 2 transforms S100A11 calgranulin into a procatabolic cytokine for chondrocytes. J Immunol 180:8378–85
  • Cordwell SJ, Thingholm TE. (2010). Technologies for plasma membrane proteomics. Proteomics 10:611–27
  • De Pinto V, Messina A, Lane DJ, Lawen A. (2010). Voltage-dependent anion-selective channel (VDAC) in the plasma membrane. FEBS Lett 584:1793–9
  • Diaz-Romero J, Gaillard JP, Grogan SP, et al. (2005). Immunophenotypic analysis of human articular chondrocytes: changes in surface markers associated with cell expansion in monolayer culture. J Cell Physiol 202:731–42
  • Dissoki S, Abourbeh G, Salnikov O, et al. (2015). PET molecular imaging of angiogenesis with a multiple tyrosine kinase receptor-targeted agent in a rat model of myocardial infarction. Mol Imaging Biol 17:222–30
  • Donato R, Cannon BR, Sorci G, et al. (2013). Functions of S100 proteins. Curr Mol Med 13:24–57
  • Dunham J, Shackleton DR, Billingham MEJ, et al. (1988). A reappraisal of the structure of normal canine articular-cartilage. J Anat 157:89–99
  • English JA, Manadas B, Scaife C, et al. (2012). Partitioning the proteome: phase separation for targeted analysis of membrane proteins in human post-mortem brain. PLoS One 7:e39509
  • Garcia BA, Platt MD, Born TL, et al. (2006). Protein profile of osteoarthritic human articular cartilage using tandem mass spectrometry. Rapid Commun Mass Spectrom 20:2999–3006
  • Hansson SF, Henriksson A, Johansson L, et al. (2010). Membrane protein profiling of human islets of langerhans using several extraction methods. Clin Proteom 6:195–207
  • Hatakeyama Y, Hatakeyama J, Oka K, et al. (2014). Immunohistochemical study of amelogenin and lysosome-associate membrane proteins (LAMPs) in cartilage. Int J Morphol 32:618–26
  • Hsueh MF, Onnerfjord P, Kraus VB. (2014). Biomarkers and proteomic analysis of osteoarthritis. Matrix Biol 39:56–66
  • Kabbani N. (2008). Proteomics of membrane receptors and signaling. Proteomics 8:4146–55
  • La Rocca G, Lo Iacono M, Corsello T, et al. (2013). Human Wharton's jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: new perspectives for cellular therapy. Curr Stem Cell Res Ther 8:100–13
  • Lambrecht S, Dhaenens M, Almqvist F, et al. (2010). Proteome characterization of human articular chondrocytes leads to novel insights in the function of small heat-shock proteins in chondrocyte homeostasis. Osteoarthr Cartil 18:440–6
  • Lambrecht S, Verbruggen G, Verdonk PC, et al. (2008). Differential proteome analysis of normal and osteoarthritic chondrocytes reveals distortion of vimentin network in osteoarthritis. Osteoarthr Cartil 16:163–73
  • Lewis R, May H, Mobasheri A, Barrett-Jolley R. (2013). Chondrocyte channel transcriptomics: do microarray data fit with expression and functional data? Channels (Austin) 7:459–67
  • Mathias RA, Chen YS, Kapp EA, et al. (2011). Triton X-114 phase separation in the isolation and purification of mouse liver microsomal membrane proteins. Methods 54:396–406
  • Matta C, Zakany R, Mobasheri A. (2015). Voltage-dependent calcium channels in chondrocytes: roles in health and disease. Curr Rheumatol Rep 17:43
  • Mobasheri A. (2013). The future of osteoarthritis therapeutics: targeted pharmacological therapy. Curr Rheumatol Rep 15:364
  • Mobasheri A, Carter SD, Martin-Vasallo P, Shakibaei M. (2002a). Integrins and stretch activated ion channels; putative components of functional cell surface mechanoreceptors in articular chondrocytes. Cell Biol Int 26:1–18
  • Mobasheri A, Neama G, Bell S, et al. (2002b). Human articular chondrocytes express three facilitative glucose transporter isoforms: GLUT1, GLUT3 and GLUT9. Cell Biol Int 26:297–300
  • Ode A, Schoon J, Kurtz A, et al. (2013). CD73/5'-ecto-nucleotidase acts as a regulatory factor in osteo-/chondrogenic differentiation of mechanically stimulated mesenchymal stromal cells. Eur Cell Mater 25:37–47
  • Orazizadeh M, Salter DM. (2008). CD147 (extracellular matrix metalloproteinase inducer-emmprin) expression by human articular chondrocytes. Iran Biomed J 12:153–8
  • Patti AM, Gabriele A, Della Rocca C. (1999). Human chondrocyte cell lines from articular cartilage of metatarsal phalangeal joints. Tissue Cell 31:550–4
  • Rabilloud T. (2003). Membrane proteins ride shotgun. Nat Biotechnol 21:508–10
  • Ruiz-Romero C, Carreira V, Rego I, et al. (2008). Proteomic analysis of human osteoarthritic chondrocytes reveals protein changes in stress and glycolysis. Proteomics 8:495–507
  • Ruiz-Romero C, Lopez-Armada MJ, Blanco FJ. (2005). Proteomic characterization of human normal articular chondrocytes: a novel tool for the study of osteoarthritis and other rheumatic diseases. Proteomics 5:3048–59
  • Samkoe KS, Tichauer KM, Gunn JR, et al. (2014). Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach. Cancer Res 74:7465–74
  • Sega EI, Low PS. (2008). Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev 27:655–64
  • Shakibaei M, Csaki C, Mobasheri A. (2008). Diverse roles of integrin receptors in articular cartilage. Adv Anat Embryol Cell Biol 197:1–60
  • Suardita K, Fujimoto K, Oda R, et al. (2002). Effects of overexpression of membrane-bound transferrin-like protein (MTf) on chondrogenic differentiation in vitro. J Biol Chem 277:48579–86
  • Sugimoto T, Yoshino M, Nagao M, et al. (1996). Voltage-gated ionic channels in cultured rabbit articular chondrocytes. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 115:223–32
  • Tsolis KC, Bei ES, Papathanasiou I, et al. (2015). Comparative proteomic analysis of hypertrophic chondrocytes in osteoarthritis. Clin Proteomics 12:12
  • Tsuga K, Tohse N, Yoshino M, et al. (2002). Chloride conductance determining membrane potential of rabbit articular chondrocytes. J Membr Biol 185:75–81
  • Williams A, Smith JR, Allaway D, et al. (2011). Applications of proteomics in cartilage biology and osteoarthritis research. Front Biosci (Landmark Ed) 16:2622–44
  • Williams A, Smith JR, Allaway D, et al. (2013). Carprofen inhibits the release of matrix metalloproteinases 1, 3, and 13 in the secretome of an explant model of articular cartilage stimulated with interleukin 1β. Arthritis Res Ther 15:R223
  • Woods VL, Jr Schreck PJ, Gesink DS, et al. (1994). Integrin expression by human articular chondrocytes. Arthritis Rheum 37:537–44
  • Wu J, Liu W, Bemis A, et al. (2007). Comparative proteomic characterization of articular cartilage tissue from normal donors and patients with osteoarthritis. Arthritis Rheum 56:3675–84
  • Yan JX, Wait R, Berkelman T, et al. (2000). A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666–72
  • Zhang ZJ, Peck SC. (2011). Simplified enrichment of plasma membrane proteins for proteomic analyses in Arabidopsis thaliana. Proteomics 11:1780–8