33
Views
1
CrossRef citations to date
0
Altmetric
Papers

Induction of monocyte chemoattractant protein-1 (MCP-1/CCL2) gene expression by human immunodeficiency virus-1 Tat in human astrocytes is CDK9 dependent

, , , &
Pages 150-167 | Received 31 Jul 2009, Accepted 17 Feb 2010, Published online: 07 Apr 2010

References

  • Abraham S, Sawaya BE, Safak M, Batuman O, Khalili K, Amini S (2003). Regulation of MCP-1 gene transcription by Smads and HIV-1 Tat in human glial cells. Virology 309:196–202.
  • Agbottah E, de La Fuente C, Nekhai S, Barnett A, Gianella-Borradori A, Pumfery A, Kashanchi F (2005). Antiviral activity of CYC202 in HIV-1-infected cells. J Biol Chem 280:3029–3042.
  • Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG, Proudfoot AE, Alouani S, Wells TN, Mariani G, Rabin RL, Farber JM, Noonan DM (1998). HIV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci USA 95:13153–13158.
  • Anderson CE, Tomlinson GS, Pauly B, Brannan FW, Chiswick A, Brack-Werner R, Simmonds P, Bell JE (2003). Relationship of Nef-positive and GFAP-reactive astrocytes to drug use in early and late HIV infection. Neuropathol Appl Neurobiol 29:378–388.
  • Arhel N, Genovesio A, Kim KA, Miko S, Perret E, Olivo-Marin JC, Shorte S, Charneau P (2006). Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat Methods 3:817–824.
  • Asensio VC, Campbell IL (1999). Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci 22:504–512.
  • Baba M (2004). Inhibitors of HIV-1 gene expression and transcription. Curr Top Med Chem 4:871–882.
  • Biglione S, Byers SA, Price JP, Nguyen VT, Bensaude O, Price DH, Maury W (2007). Inhibition of HIV-1 replication by P-TEFb inhibitors DRB, seliciclib and flavopiridol correlates with release of free P-TEFb from the large, inactive form of the complex. Retrovirology 4:47–58.
  • Blaecke A, Delneste Y, Herbault N, Jeannin P, Bonnefoy JY, Beck A, Aubry JP (2002). Measurement of nuclear factor-kappa B translocation on lipopolysaccharide-activated human dendritic cells by confocal microscopy and flow cytometry. Cytometry 48:71–79.
  • Borjabad A, Brooks AI, Volsky DJ (2009). Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders. J Neuroimmune Pharmacol 5:44–62.
  • Boukari K, Ciampi ML, Guiochon-Mantel A, Young J, Lombes M, Meduri G (2007). Human fetal testis: source of estrogen and target of estrogen action. Hum Reprod 22:1885-1892.
  • Canduri F, Perez PC, Caceres RA, de Azevedo WF Jr. (2008). CDK9 a potential target for drug development. Med Chem 4:210–218.
  • Chaloin O, Peter JC, Briand JP, Masquida B, Desgranges C, Muller S, Hoebeke J (2005). The N-terminus of HIV-1 Tat protein is essential for Tat-TAR RNA interaction. Cell Mol Life Sci 62:355–361.
  • Chang HC, Samaniego F, Nair BC, Buonaguro L, Ensoli B (1997). HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. Aids 11:1421–1431.
  • Chipitsyna G, Sawaya BE, Khalili K, Amini S (2006). Cooperativity between Rad51 and C/EBP family transcription factors modulates basal and Tat-induced activation of the HIV-1 LTR in astrocytes. J Cell Physiol 207:605–613.
  • Chiu YL, Cao H, Jacque JM, Stevenson M, Rana TM (2004). Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). J Virol 78:2517–2529.
  • Cinque P, Vago L, Mengozzi M, Torri V, Ceresa D, Vicenzi E, Transidico P, Vagani A, Sozzani S, Mantovani A, Lazzarin A, Poli G (1998). Elevated cerebrospinal fluid levels of monocyte chemotactic protein-1 correlate with HIV-1 encephalitis and local viral replication. AIDS 12:1327–1332.
  • Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998). Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 95:3117–3121.
  • Deshayes F, Lapree G, Portier A, Richard Y, Pencalet P, Mahieu-Caputo D, Horellou P, Tsapis A (2004). Abnormal production of the TNF-homologue APRIL increases the proliferation of human malignant glioblastoma cell lines via a specific receptor. Oncogene 23:3005–3012.
  • Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, Faden AI (2005). Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 102:8333–8338.
  • Dollard SC, James HJ, Sharer LR, Epstein LG, Gelbard HA, Dewhurst S (1995). Activation of nuclear factor kappa B in brains from children with HIV-1 encephalitis. Neuropathol Appl Neurobiol 21:518–528.
  • Egashira K, Koyanagi M, Kitamoto S, Ni W, Kataoka C, Morishita R, Kaneda Y, Akiyama C, Nishida KI, Sueishi K, Takeshita A (2000). Anti-monocyte chemoattractant protein-1 gene therapy inhibits vascular remodeling in rats: blockade of MCP-1 activity after intramuscular transfer of a mutant gene inhibits vascular remodeling induced by chronic blockade of NO synthesis. FASEB J 14:1974–1978.
  • Foskett SM, Ghose R, Tang DN, Lewis DE, Rice AP (2001). Antiapoptotic function of Cdk9 (TAK/P-TEFb) in U937 promonocytic cells. J Virol 75:1220–1228.
  • Garriga J, Xie H, Obradovic Z, Grana X (2009). Selective control of gene expression by CDK9 in human cells. J Cell Physiol 222:200–208.
  • Gold MO, Yang X, Herrmann CH, Rice AP (1998). PITALRE, the catalytic subunit of TAK, is required for human immunodeficiency virus Tat transactivation in vivo. J Virol 72:4448–4453.
  • Gorry PR, Howard JL, Churchill MJ, Anderson JL, Cunningham A, Adrian D, McPhee DA, Purcell DF (1999). Diminished production of human immunodeficiency virus type 1 in astrocytes results from inefficient translation of gag, env, and nef mRNAs despite efficient expression of Tat and Rev. J Virol 73:352–361.
  • Hudson L, Liu J, Nath A, Jones M, Raghavan R, Narayan O, Male D, Everall I (2000). Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. J NeuroVirol 6:145–155.
  • Janabi N, Di Stefano M, Wallon C, Hery C, Chiodi F, Tardieu M (1998). Induction of human immunodeficiency virus type 1 replication in human glial cells after proinflammatory cytokines stimulation: effect of IFNgamma, IL1beta, and TNFalpha on differentiation and chemokine production in glial cells. Glia 23:304–315.
  • Jones M, Olafson K, Del Bigio MR, Peeling J, Nath A (1998). Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. J Neuropathol Exp Neurol 57:563–570.
  • Jordan A, Defechereux P, Verdin E (2001). The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J 20:1726–1738.
  • Kaniowska D, Kaminski R, Amini S, Radhakrishnan S, Rappaport J, Johnson E, Khalili K, Del Valle L, Darbinyan A (2006). Cross-interaction between JC virus agnoprotein and human immunodeficiency virus type 1 (HIV-1) Tat modulates transcription of the HIV-1 long terminal repeat in glial cells. J Virol 80:9288–9299.
  • Kaul M, Garden GA, Lipton SA (2001). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994.
  • Kelder W, McArthur JC, Nance-Sproson T, McClernon D, Griffin DE (1998). Beta-chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia. Ann Neurol 44:831–835.
  • Kim BO, Liu Y, Ruan Y, Xu ZC, Schantz L, He JJ (2003). Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am J Pathol 162:1693–1707.
  • Kim EH, Kim SU, Shin DY, Choi KS (2004). Roscovitine sensitizes glioma cells to TRAIL-mediated apoptosis by downregulation of survivin and XIAP. Oncogene 23:446–456.
  • Kim YK, Bourgeois CF, Pearson R, Tyagi M, West MJ, Wong J, Wu SY, Chiang CM, Karn J (2006). Recruitment of TFIIH to the HIV LTR is a rate-limiting step in the emergence of HIV from latency. EMBO J 25:3596–3604.
  • Kolson DL (2002). Neuropathogenesis of central nervous system HIV-1 infection. Clin Lab Med 22:703–717.
  • Kovacs AD, Chakraborty-Sett S, Ramirez SH, Sniderhan LF, Williamson AL, Maggirwar SB (2004). Mechanism of NF-kappaB inactivation induced by survival signal withdrawal in cerebellar granule neurons. Eur J Neurosci 20:345–352.
  • Kruman, II, Nath A, Mattson MP (1998). HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154:276–288.
  • Langford D, Masliah E (2002). Role of trophic factors on neuroimmunity in neurodegenerative infectious diseases. J NeuroVirol 8:625–638.
  • Lim SP, Garzino-Demo A (2000). The human immunodeficiency virus type 1 Tat protein up-regulates the promoter activity of the beta-chemokine monocyte chemoattractant protein 1 in the human astrocytoma cell line U-87 MG: role of SP-1, AP-1, and NF-kappaB consensus sites. J Virol 74:1632–1640.
  • Liu H, Herrmann CH (2005). Differential localization and expression of the Cdk9 42k and 55k isoforms. J Cell Physiol 203:251–260.
  • Mahlknecht U, Dichamp I, Varin A, Van Lint C, Herbein G (2008). NF-kappaB-dependent control of HIV-1 transcription by the second coding exon of Tat in T cells. J Leukoc Biol 83:718–727.
  • Mancebo HS, Lee G, Flygare J, Tomassini J, Luu P, Zhu Y, Peng J, Blau C, Hazuda D, Price D, Flores O (1997). P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 11:2633–2644.
  • Marshall NF, Price DH (1995). Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J Biol Chem 270:12335–12338.
  • McClue SJ, Blake D, Clarke R, Cowan A, Cummings L, Fischer PM, MacKenzie M, Melville J, Stewart K, Wang S, Zhelev N, Zheleva D, Lane DP (2002). In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int J Cancer 102:463–468.
  • Mori N, Ueda A, Ikeda S, Yamasaki Y, Yamada Y, Tomonaga M, Morikawa S, Geleziunas R, Yoshimura T, Yamamoto N (2000). Human T-cell leukemia virus type I tax activates transcription of the human monocyte chemoattractant protein-1 gene through two nuclear factor-kappaB sites. Cancer Res 60:4939–4945.
  • Morris EJ, Geller HM (1996). Induction of neuronal apoptosis by camptothecin, an inhibitor of DNA topoisomerase-I: evidence for cell cycle-independent toxicity. J Cell Biol 134:757–770.
  • Nath A, Haughey NJ, Jones M, Anderson C, Bell JE, Geiger JD (2000). Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: protection by memantine. Ann Neurol 47:186–194.
  • Nath A, Schiess N, Venkatesan A, Rumbaugh J, Sacktor N, McArthur J (2008). Evolution of HIV dementia with HIV infection. Int Rev Psychiatry 20:25–31.
  • New DR, Maggirwar SB, Epstein LG, Dewhurst S, Gelbard HA (1998). HIV-1 Tat induces neuronal death via tumor necrosis factor-alpha and activation of non-N-methyl-D-aspartate receptors by a NFkappaB-independent mechanism. J Biol Chem 273:17852–17858.
  • Pande V, Ramos MJ (2003). Nuclear factor kappa B: a potential target for anti-HIV chemotherapy. Curr Med Chem 10:1603–1615.
  • Petito CK, Adkins B, McCarthy M, Roberts B, Khamis I (2003). CD4+ and CD8+ cells accumulate in the brains of acquired immunodeficiency syndrome patients with human immunodeficiency virus encephalitis. J NeuroVirol 9:36–44.
  • Pleskoff O, Treboute C, Brelot A, Heveker N, Seman M, Alizon M (1997). Identification of a chemokine receptor encoded by human cytomegalovirus as a cofactor for HIV-1 entry. Science 276:1874–1878.
  • Pumfery A, de la Fuente C, Berro R, Nekhai S, Kashanchi F, Chao SH (2006). Potential use of pharmacological cyclin-dependent kinase inhibitors as anti-HIV therapeutics. Curr Pharm Des 12:1949–1961.
  • Ramirez SH, Sanchez JF, Dimitri CA, Gelbard HA, Dewhurst S, Maggirwar SB (2001). Neurotrophins prevent HIV Tat-induced neuronal apoptosis via a nuclear factor-kappaB (NF-kappaB)-dependent mechanism. J Neurochem 78:874–889.
  • Richter SN, Palu G (2006). Inhibitors of HIV-1 Tat-mediated transactivation. Curr Med Chem 13:1305–1315.
  • Rostasy K, Monti L, Yiannoutsos C, Wu J, Bell J, Hedreen J, Navia BA (2000). NFkappaB activation, TNF-alpha expression, and apoptosis in the AIDS-Dementia-Complex. J NeuroVirol 6:537–543.
  • Salerno D, Hasham MG, Marshall R, Garriga J, Tsygankov AY, Grana X (2007). Direct inhibition of CDK9 blocks HIV-1 replication without preventing T-cell activation in primary human peripheral blood lymphocytes. Gene 405:65–78.
  • Seth P, Major EO (2005). Human brain derived cell culture models of HIV-1 infection. Neurotox Res 8:83–89.
  • Shan B, Zhuo Y, Chin D, Morris CA, Morris GF, Lasky JA (2005). Cyclin-dependent kinase 9 is required for tumor necrosis factor-alpha-stimulated matrix metalloproteinase-9 expression in human lung adenocarcinoma cells. J Biol Chem 280:1103–1111.
  • Sheng WS, Hu S, Lokensgard JR, Peterson PK (2003). U50,488 inhibits HIV-1 Tat-induced monocyte chemoattractant protein-1 (CCL2) production by human astrocytes. Biochem Pharmacol 65:9–14.
  • Shore SM, Byers SA, Dent P, Price DH (2005). Characterization of Cdk9(55) and differential regulation of two Cdk9 isoforms. Gene 350:51–58.
  • Solly SK, Nguyen TH, Weber A, Horellou P (2005). Targeting of c-Met and urokinase expressing human glioma cell lines by retrovirus vector displaying single-chain variable fragment antibody. Cancer Biol Ther 4:987–992.
  • Sun J, Soos T, Kewalramani VN, Osiecki K, Zheng JH, Falkin L, Santambrogio L, Littman DR, Goldstein H (2006). CD4-specific transgenic expression of human cyclin T1 markedly increases human immunodeficiency virus type 1 (HIV-1) production by CD4+ T lymphocytes and myeloid cells in mice transgenic for a provirus encoding a monocyte-tropic HIV-1 isolate. J Virol 80:1850–1862.
  • Taylor JP, Pomerantz RJ, Raj GV, Kashanchi F, Brady JN, Amini S, Khalili K (1994). Central nervous system-derived cells express a kappa B-binding activity that enhances human immunodeficiency virus type 1 transcription in vitro and facilitates TAR-independent transactivation by Tat. J Virol 68:3971–3981.
  • Tyagi M, Karn J (2007). CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency. EMBO J 26:4985–4995.
  • Wang D, de la Fuente C, Deng L, Wang L, Zilberman I, Eadie C, Healey M, Stein D, Denny T, Harrison LE, Meijer L, Kashanchi F (2001). Inhibition of human immunodeficiency virus type 1 transcription by chemical cyclin-dependent kinase inhibitors. J Virol 75:7266–7279.
  • Watkins BA, Dorn HH, Kelly WB, Armstrong RC, Potts BJ, Michaels F, Kufta CV, Dubois-Dalcq M (1990). Specific tropism of HIV-1 for microglial cells in primary human brain cultures. Science 249:549–553.
  • Wiznerowicz M, Trono D (2003). Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77:8957–8961.
  • Zandomeni R, Zandomeni MC, Shugar D, Weinmann R (1986). Casein kinase type II is involved in the inhibition by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole of specific RNA polymerase II transcription. J Biol Chem 261:3414–3419.
  • Zennaro MC, Le Menuet D, Lombes M (1996). Characterization of the human mineralocorticoid receptor gene 5′-regulatory region: evidence for differential hormonal regulation of two alternative promoters via nonclassical mechanisms. Mol Endocrinol 10:1549–1560.
  • Zhu Y, Pe'ery T, Peng J, Ramanathan Y, Marshall N, Marshall T, Amendt B, Mathews MB, Price DH (1997). Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev 11:2622–2632.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.