538
Views
44
CrossRef citations to date
0
Altmetric
Original Article

Biocompatibility of Nitinol

Pages 99-105 | Published online: 10 Jul 2009

References

  • Andreasen G F, Fahl J L. Alloys, shape memory. Encyclopedia of medical devices and instrumentation, J G Webster. Wiley, New York 1987; 15–20
  • Buehler W J, Wang F E. A summary of recent research on the Nitinol alloys and their potential application in ocean engineering. Ocean Eng 1967; 1: 105–20
  • Drugacz J, Lekston Z, Morawiec H, Januszewski K. Use of TiNiCo shape-memory clamps in the surgical treatment of mandibular fractures. J Oral Maxillofac Surg 1995; 53: 665–71
  • Blum U, Voshage G, Beyersdorf F, et al. Two-center German experience with aortic endografting. J Endovasc Surg 1997; 4: 137–46
  • Ryhänen J. (1998) Complete acromioclavicular dislocation repair with a new shape memory AC-hook implant: An operative technique and prospective pilot study. 7th international congress on surgery of the shoulder. Aug, 101998. ICSS, SydneyAustralia, 292
  • Williams D F, Black J, Doherty P J. Biomaterial-tissue interfaces. Consensus report of second conference on definitions in biomaterials, P J Doherty, R L Williams, D F Williams, A JC Lee. Elsevier, Amsterdam 1992; 525–33
  • Branemark P I, Adell R, Breine U, et al. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969; 3: 81–100
  • Under L, Carlsson A, Marsal L, et al. Clinical aspects of osseointegration in joint replacement. A histological study of titanium implants. J Bone Joint Surg 1988; 70: 550–5
  • Pfeiffer K M, Brennwald J, Buehler U, et al. Implants of pure titanium for internal fixation of the peripheral skeleton. Injury 1994; 25: 87–9
  • Toth R W, Parr G R, Gardner L K. Soft tissue response to endosseous titanium oral implants. J Prosthet Dent 1985; 54: 564–7
  • Kasemo B, Lausmaa J. The biomaterial-tissue interface and its analogues in surface science and technology. The bone-biomaterial interface, J E Davies. University of Toronto Press, Toronto 1991; 2: 19–32
  • Zitter H, Plenk H J. The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility. J Biomed Mater Res 1987; 21: 881–96
  • Hanawa T, Ota M. Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 1991; 12: 767–74
  • Anke M, Groppel B, Kronemann H, Grun M. Nickel — an essential element. IARC Sci Pub 1984; 339–65
  • Szilagyi M, Anke M, Balogh I. Effect of nickel deficiency on biochemical variables in serum, liver, heart and kidneys of goats. Acta Vet Hung 1991; 39: 231–8
  • Putters J L, Kaulesar S D, de Z G, et al. Comparative cell culture effects of shape memory metal (Nitinol), nickel and titanium: a biocompatibility estimation. Eur Surg Res 1992; 24: 378–82
  • Gerber H, Perren S M. Evaluation of tissue compatibility of in vitro cultures of embryonic bone. Evaluation of biomaterials, G D Winter, J L Leray, K de Groot. Wiley, New York 1980; 307–14
  • Laing P G, Ferguson A BJ, Hodge E S. Tissue reaction in rabbit muscle exposed to metallic implants. J Biomed Mater Res 1967; 1: 135–49
  • Hartwig A, Kruger I, Beyersmann D. Mechanisms in nickel genotoxicity: the significance of interactions with DNA repair. Toxicol Lett 1994; 72: 353–8
  • Oller A R, Costa M, Oberdorster G. Carcinogenicity assessment of selected nickel compounds. Toxicol Appl Pharmacol 1997; 143: 152–66
  • Klein C B, Frenkel K, Costa M. The role of oxidative processes in metal carcinogenesis. Chem Res Toxicol 1991; 4: 592–604
  • Klein C B, Conway K, Wang X W, et al. Senescence of nickel-transformed cells by an × chromosome: possible epigenetic control. Science 1991; 251: 796–9
  • Rock M. Cancer. Handbook of biomaterial properties, J Black, G Hastings. Chapman & Hall. 1998; 5: 529–44
  • Peltonen L. Nickel sensitivity in the general population. Contact Dermatitis 1979; 5: 27–32
  • Barnetson R, Gawkrodger D. Hypersensitivity Type IV. Immunology, I M Roit, J Brostoff, D K Male. Mosby, St Louis 1993
  • Ishii N, Moriguchi N, Nakajima H, et al. Nickel sulfate-specific suppressor T cells induced by nickel sulfate in drinking water. J Dermatol Sci 1993; 6: 159–64
  • van Hoogstraten I M, Boden D, von B M, et al. Persistent immune tolerance to nickel and chromium by oral administration prior to cutaneous sensitization. J Invest Dermatol 1992; 99: 608–16
  • Bjurholm A, al-Tawil N A, Marcusson J A, Netz P. The lymphocyte response to nickel salt in patients with orthopedic implants. Acta Orthop Scand 1990; 61: 248–50
  • Christensen O B. Nickel dermatitis. An update. Dermatol Clin 1990; 8: 37–40
  • Gawkrodger D J. Nickel sensitivity and the implantation of orthopaedic prostheses. Contact Dermatitis 1993; 28: 257–9
  • Milavec-Puretic V, Orlic D, Marusic A. Sensitivity to metals in 40 patients with failed hip endoprosthesis. Arch Orthop Trauma Surg 1998; 117: 383–6
  • Poehler O EM. Degradation of metallic orthopedic implants. Biomaterials in reconstructive surgery, L R Rubin. C.V. Mosby Company, St Louis 1983; 158–228
  • Kruger J. Fundamental aspects of the corrosion of metallic implants. Biomaterials in reconstructive surgery, L R Rubin. Mosby, St Louis 1983; 145–57
  • Endo K, Sachdeva R, Araki Y, Ohno H. Effects of titanium nitride coatings on surface and corrosion characteristics of Ni-Ti alloy. Dent Mater J 1994; 13: 228–39
  • Hanawa T. Titanium and its oxide film: a substrate for formation of apatite. The bone-biomaterial interface, J E Davies. University of Toronto Press, Toronto 1991; 49–61
  • Oshida Y, Sachdeva R C, Miyazaki S. Microanalytical characterization and surface modification of TiNi orthodontic archwires. Biomed Mater Eng 1992; 2: 51–69
  • Shabalovskaya S A. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Biomed Mater Eng 1996; 6: 267–89
  • Trigwell S, Selvaduray G. Effects of surface finish on the corrosion of NiTi alloy for biomedical applications. Shape memory and superelastic technologies: proceedings of SMST-97, A R Pelton, D Hodgson, S M Russell, T W Duerig. SMST, Pacific Grove, CA 1997; 383–8
  • Castleman L S, Motzkin S M. The biocompatibility of Nitinol. Biocompatibility of clinical implant materials, D F Williams. CRC Press, Inc., Boca Raton, Florida 1981; 129–54
  • Assad M, Lombardi S, Berneche S, et al. Essais de cytotoxicite sur I'alliage a memoire de forme Nickel-Titane. Ann Chir 1994; 48: 731–6
  • Weaver D J, Veldhuizen A G, Sanders M M, et al. Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials 1997; 18: 1115–20
  • Assad M, Yahia L H, Rivard C H, Lemieux N. In vitro biocompatibility assessment of a nickel-titanium alloy using electron microscopy in situ end-labeling (EM-ISEL). J Biomed Mater Res 1998; 41: 154–61
  • Wataha J C, Lockwood P E, Marek M, Ghazi M. Ability of Ni-containing biomedical alloys to activate monocytes and endothelial cells in vitro. J Biomed Mater Res 1999; 45: 251–7
  • Ryhänen J, Niemi E, Serlo W, et al. Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res 1997; 35: 451–7
  • Cutright D E, Bhaskar S N, Perez B, et al. Tissue reaction to nitinol wire alloy. Oral Surg Oral Med Oral Pathol 1973; 35: 578–84
  • Castleman L S, Motzkin S M, Alicandri F P, Bonawit V L. Biocompatibility of nitinol alloy as an implant material. J Biomed Mater Res 1976; 10: 695–731
  • Ryhänen J, Kallioinen M, Tuukkanen J, et al. In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: muscle and perineural tissue responses and encapsule membrane thickness. J Biomed Mater Res 1998; 41: 481–8
  • Cragg A, Lund G, Rysavy J, et al. Nonsurgical placement of arterial endoprostheses: a new technique using nitinol wire. Radiology 1983; 147: 261–3
  • Cragg A H, De J S, Barnhart W H, et al. Nitinol intravascular stent: results of preclinical evaluation. Radiology 1993; 189: 775–8
  • Grenadier E, Shofti R, Beyar M, et al. Self-expandable and highly flexible nitinol stent: immediate and long-term results in dogs. Am Heart J 1994; 128: 870–8
  • Rabkin D L, Minkina S M, Kadnikov A A, Khasenov B P. Eksperimentarno-morfologicheskoe obosnovanie rentgenoendovaskuliarnogo protezirovaniia sosudov. Med Radiol (Mosk) 1986; 31: 55–63
  • Sheth S, Litvack F, Dev V, et al. Subacute thrombosis and vascular injury resulting from slotted-tube nitinol and stainless steel stents in a rabbit carotid artery model. Circulation 1996; 94: 1733–40
  • Sutton C S, Oku T, Harasaki H, et al. Titanium-nickel intravascular endoprosthesis: a 2-year study in dogs. Am J Roentgenol 1988; 151: 597–601
  • Wakhloo A K, Schellhammer F, de V J, Haberstroh J, Schumacher M. Self-expanding and balloon-expandable stents in the treatment of carotid aneurysms: an experimental study in a canine model. Am J Neuroradiol 1994; 15: 493–502
  • Trepanier C, Leung T K, Tabrizian M, et al. Preliminary investigation of the effects of surface treatments on biological response to shape memory NiTi stents. J Biomed Mater Res 1999; 48: 165–71
  • Hayoz D, Do D D, Mahler F, et al. Acute inflammatory reaction associated with endoluminal bypass grafts. J Endovasc Surg 1997; 4: 354–60
  • Kellner W, Kuffer G, Pfluger T, et al. MR imaging of soft-tissue changes after percutaneous transluminal angioplasty and stent placement. Radiology 1997; 202: 327–31
  • Rechavia E, Litvack F, Fishbien M C, et al. Biocompatibility of polyurethane-coated stents: tissue and vascular aspects. Cathet Cardiovasc Diagn 1998; 45: 202–7
  • Schurmann K, Vorwerk D, Bucker A, et al. Perigraft inflammation due to Dacron-covered stent-grafts in sheep iliac arteries: correlation of MR imaging and histopathologic findings. Radiology 1997; 204: 757–63
  • Simske S J, Sachdeva R. Cranial bone apposition and ingrowth in a porous nickel-titanium implant. J Biomed Mater Res 1995; 29: 527–33
  • Berger-Gorbet M, Broxup B, Rivard C, Yahia L H. Biocompatibility testing of NiTi screws using immunohistochemistry on sections containing metallic implants. J Biomed Mater Res 1996; 32: 243–8
  • Takeshita F, Takata H, Ayukawa Y, Suetsugu T. Histomorphometric analysis of the response of rat tibiae to shape memory alloy (nitinol). Biomaterials 1997; 18: 21–5
  • Ryhänen J, Kallioinen M, Tuukkanen J, et al. Bone modeling and cell-material interface responses induced by nickel-titanium shape memory alloy after periosteal implantation. Biomaterials 1999; 20: 1309–17
  • Ryhänen J, Kallioinen M, Serlo W, et al. Bone healing and mineralization, implant corrosion, and trace metals after nickel-titanium shape memory metal intramedullary fixation. J Biomed Mater Res 1999; 47: 472–80
  • Itro A, Garau V, Tartaro G P, Colella G. La nostra esperienza su di una metodica di fissazione rigida in chirurgia maxillo-facciale mediante clips a memoria di forma. Minerva Stomatol 1997; 46: 381–9
  • Musialek J, Filip P, Nieslanik J. Titanium-nickel shape memory clamps in small bone surgery. Arch Orthop Trauma Surg 1998; 117: 341–4
  • Silberstein B. Subtotal and total vertebral body replacement and interbody fusion with porous Ti-Ni implants. Shape memory and superelastic technologies: proceedings of SMST-97, A R Pelton, D Hodgson, S M Russell, T W Duerig. SMST, Pacific Grove, CA 1997; 617–21
  • Sysolyatin P G, Gyunter V E, Starokha A V, . The use of Ni-Ti implants in maxillofacial surgery. Shape memory and superelastic technologies: proceedings of SMST-94, A R Pelton, D Hodgson, T W Duerig, et al. SMST, Pacific Grove, CA 1994; 470–5
  • Von Salis-Soglio G F. Die Memory-Spondylodese an der Lendenwirbelsaule—Ergebnisse nach 76 Operationen. Z Orthop 1989; 127: 191–6
  • Dai K, Chu Y. Studies and applications of NiTi shape memory alloys in the medical field in China. Biomed Mater Eng 1996; 6: 233–40
  • Kuo P R, Yang P J, Zhang Y F, et al. The use of nickel-titanium alloy in orthopedic surgery in China. Orthopedics 1989; 12: 111–6
  • Yang P J, Zhang Y F, Ge M Z, et al. Internal fixation with Ni-Ti shape memory alloy compressive staples in orthopedic surgery. A review of 51 cases. Chin Med J (Engl) 1987; 100: 712–4
  • Matsumoto K, Tajima N, Kuwahara S. Correction of scoliosis with shape-memory alloy. Nippon Seik Gak Zasshi 1993; 67: 267–74

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.