2,365
Views
73
CrossRef citations to date
0
Altmetric
Nanotechnology

Nanotechnologies in regenerative medicine

&
Pages 144-156 | Published online: 25 May 2010

References

  • Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A. 2003;67:531–7.
  • Zhu X, Chen J, Scheideler L, Altebaeumer T, Geis-Gerstorfer J, Kern D. Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces. Cells Tissues Org. 2004;178:13–22.
  • Sandhiya S, Dkhar SA, Surendiran A. Emerging trends of nanomedicine: an overview. Fundam Clin Pharmacol. 2009;23:263–9.
  • Engel E, Michiardi A, Navarro M, Lacroix D, Planell JA. Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol. 2008;26:39–47.
  • Tran PA, Zhang L, Webster TJ. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev. 2009;61:1097–114.
  • Jirsak O, Sanetrnik F, Lukas D, Kotek L, Martinova L, Chaloupek J. 2005; U.S. patent WO 205024101.
  • Kubinova S, Dubsky M, Michalek J, Pradny M, Svobodova J, Munzarova M, Cell-seeded electrospun nanofibers as scaffolds in tissue regeneration. Tissue Eng Reg Med. 2009;6:S247.
  • Murugan R, Ramakrishna S. Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng 2007;13:1845–66.
  • Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev. 2009;61:1033–42.
  • Zhang YZ, Su B, Venugopal J, Ramakrishna S, Lim CT. Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers. Int J Nanomedicine. 2007;2: 623–38.
  • Sahoo S, Ang L, Goh J, Toh S. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A. 2009; 10.1002/jbm.a.32645.
  • Huang ZM, He CL, Yang A, Zhang Y, Han XJ, Yin J, Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res A 2006;77: 169–79.
  • Ki CS, Park SY, Kim HJ, Jung HM, Woo KM, Lee JW, Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration. Biotechnol Lett. 2008;30:405–10.
  • Yang X, Shah JD, Wang H. Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation. Tissue Eng. 2009;15:945–56.
  • Hossein H, Mohsen H, Shunji H, Rumiko M, Nanako K. Micro and nano-scale in vitro 3D culture system for cardiac stem cells. J Biomed Mater Res A. 2009; 10.1002/jbm.a.32676.
  • Park SH, Kim TG, Kim HC, Yang DY, Park TG. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater. 2008;4:1198–207.
  • Kubinova S, Sykova E. Nanotechnology for treatment of stroke and spinal cord injury. Nanomed. 2010;5:99–108.
  • Srouji S, Kizhner T, Suss-Tobi E, Livne E, Zussman E. 3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold. J Mater Sci Mater Med. 2008;19:1249–55.
  • Zhang S, Gelain F, Zhao X. Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol. 2005;15:413–20.
  • Yokoi H, Kinoshita T, Zhang S. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci USA. 2005;102:8414–9.
  • Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science. 2004;303: 1352–5.
  • Gelain F, Bottai D, Vescovi A, Zhang S. Designer self-assembling Peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One. 2006;1:e119.
  • Davis ME, Hsieh PC, Takahashi T, Song Q, Zhang S, Kamm RD, Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci USA. 2006;103:8155–60.
  • Segers VF, Tokunou T, Higgins LJ, MacGillivray C, Gannon J, Lee RT. Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation. 2007;116:1683–92.
  • Katti DS, Robinson KW, Ko FK, Laurencin CT. Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res B. 2004;70:286–96.
  • Choi JS, Leong KW, Yoo HS. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials. 2008;29:587–96.
  • Kong H, Jang J. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir. 2008;24:2051–6.
  • Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N. Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B 2003;67:675-9.
  • Lee KY, Jeong L, Kang YO, Lee SJ, Park WH. Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev. 2009;61:1020–32.
  • Ignatova M, Starbova K, Markova N, Manolova N, Rashkov I. Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl alcohol). Carbohydr Res. 2006;341:2098–107.
  • Ignatova M, Manolova N, Markova N, Rashkov I. Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol Biosci. 2009;9:102–11.
  • Wang CC, Su CH, Chen CC. Water absorbing and antibacterial properties of N-isopropyl acrylamide grafted and collagen/chitosan immobilized polypropylene nonwoven fabric and its application on wound healing enhancement. J Biomed Mater Res A. 2008;84:1006–17.
  • Kang YO, Yoon IS, Lee SY, Kim DD, Lee SJ, Park WH, Chitosan-coated poly(vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res B. 2009;92B:568–76.
  • Scherer SS, Pietramaggiori G, Matthews J, Perry S, Assmann A, Carothers A, Poly-N-acetyl glucosamine nanofibers: a new bioactive material to enhance diabetic wound healing by cell migration and angiogenesis. Ann Surg. 2009;250:322–30.
  • Han I, Shim KJ, Kim JY, Im SU, Sung YK, Kim M, Effect of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber matrices cocultured with hair follicular epithelial and dermal cells for biological wound dressing. Artif Organs. 2007;31:801–8.
  • Meng H, Chen L, Ye Z, Wang S, Zhao X. The effect of a self-assembling peptide nanofiber scaffold (peptide) when used as a wound dressing for the treatment of deep second degree burns in rats. J Biomed Mater Res B. 2009;89B:379–91.
  • Ma Z, He W, Yong T, Ramakrishna S. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng. 2005;11:1149–58.
  • Lu H, Feng Z, Gu Z, Liu C. Growth of outgrowth endothelial cells on aligned PLLA nanofibrous scaffolds. J Mater Sci Mater Med. 2009;20:1937–44.
  • He W, Yong T, Ma ZW, Inai R, Teo WE, Ramakrishna S. Biodegradable polymer nanofiber mesh to maintain functions of endothelial cells. Tissue Eng. 2006;12:2457–66.
  • Carampin P, Conconi MT, Lora S, Menti AM, Baiguera S, Bellini S, Electrospun polyphosphazene nanofibers for in vitro rat endothelial cells proliferation. J Biomed Mater Res A. 2007;80:661–8.
  • Han Z, Kong H, Meng J, Wang C, Xie S, Xu H. Electrospun aligned nanofibrous scaffold of carbon nanotubes-polyurethane composite for endothelial cells. J Nanosci Nanotechnol. 2009;9:1400–2.
  • Hashi CK, Zhu Y, Yang GY, Young WL, Hsiao BS, Wang K, Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci USA. 2007;104:11915–20.
  • Lu J, Rao MP, MacDonald NC, Khang D, Webster TJ. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomater. 2008;4:192–201.
  • Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev. 2009;61:1065–83.
  • Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006;27:3115–24.
  • Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials. 2008;29:161–71.
  • Lee JY, Choo JE, Choi YS, Suh JS, Lee SJ, Chung CP, Osteoblastic differentiation of human bone marrow stromal cells in self-assembled BMP-2 receptor-binding peptide-amphiphiles. Biomaterials. 2009;30:3532–41.
  • Hejcl A, Lesny P, Pradny M, Michalek J, Jendelova P, Stulik J, Biocompatible hydrogels in spinal cord injury repair. Physiol Res. 2008;57:S121–32.
  • Hejcl A, Sedy J, Kapcalova M, Arboleda Toro D, Amemori T, Likavcanova-Masinova K, HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells Dev. 2010, in press.
  • Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci USA. 2000;97:6728–33.
  • Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S, So KF, Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA. 2006;103:5054–9.
  • Guo J, Su H, Zeng Y, Liang YX, Wong WM, Ellis-Behnke RG, Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold. Nanomedicine. 2007;3:311–21.
  • Guo J, Leung KK, Su H, Yuan Q, Wang L, Chu TH, Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Nanomedicine. 2009;5:345–51.
  • Tysseling-Mattiace VM, Sahni V, Niece KL, Birch D, Czeisler C, Fehlings MG, Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci. 2008;28:3814–23.
  • Cao H, Liu T, Chew SY. The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev. 2009;61:1055–64.
  • Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials. 2007;28:3012–25.
  • Corey JM, Lin DY, Mycek KB, Chen Q, Samuel S, Feldman EL, Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J Biomed Mater Res A. 2007;83:636–45.
  • Lee JY, Bashur CA, Goldstein AS, Schmidt CE. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials. 2009;30:4325–35.
  • Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials. 2009;30:354–62.
  • Ahmed I, Liu HY, Mamiya PC, Ponery AS, Babu AN, Weik T, Three-dimensional nanofibrillar surfaces covalently modified with tenascin-C-derived peptides enhance neuronal growth in vitro. J Biomed Mater Res A. 2006; 76:851–60.
  • Wang W, Itoh S, Matsuda A, Aizawa T, Demura M, Ichinose S, Enhanced nerve regeneration through a bilayered chitosan tube: the effect of introduction of glycine spacer into the CYIGSR sequence. J Biomed Mater Res A. 2008;85:919–28.
  • Panseri S, Cunha C, Lowery J, Del Carro U, Taraballi F, Amadio S, Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol. 2008;8:39.
  • Chew SY, Mi R, Hoke A, Leong KW. Aligned Protein-Polymer Composite Fibers Enhance Nerve Regeneration: A Potential Tissue-Engineering Platform. Adv Funct Mater. 2007;17:1288–96.
  • Rochkind S, Shahar A, Fliss D, El-Ani D, Astachov L, Hayon T, Development of a tissue-engineered composite implant for treating traumatic paraplegia in rats. Eur Spine J. 2006;15:234–45.
  • Silva GA. Nanomedicine: shorting neurons with nanotubes. Nat Nanotechnol. 2009;4:82–3.
  • McKenzie JL, Waid MC, Shi R, Webster TJ. Decreased functions of astrocytes on carbon nanofiber materials. Biomaterials. 2004;25:1309–17.
  • Pellegrini G, Rama P, Mavilio F, De Luca M. Epithelial stem cells in corneal regeneration and epidermal gene therapy. J Pathol. 2009;217:217–28.
  • Shimazaki J, Higa K, Kato N, Satake Y. Barrier function of cultivated limbal and oral mucosal epithelial cell sheets. Invest Ophthalmol Vis Sci. 2009;50:5672–80.
  • Zajícova A, Pokorna K, Lencova A, Krulova M, Svobodova S, Kubinova S, Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell transplant. 2010, in press.
  • Gilad AA, Walczak P, McMahon MT, Na HB, Lee JH, An K, MR tracking of transplanted cells with “positive contrast” using manganese oxide nanoparticles. Magn Reson Med. 2008;60:1–7.
  • Bulte JW, Zhang S, van Gelderen P, Herynek V, Jordan EK, Duncan ID, Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA. 1999;96:15256–61.
  • Bulte JW, Douglas T, Witwer B, Zhang SC, Lewis BK, van Gelderen P, Monitoring stem cell therapy in vivo using magnetodendrimers as a new class of cellular MR contrast agents. Acad Radiol. 2002;9(S2):S332–5.
  • Kircher MF, Allport JR, Graves EE, Love V, Josephson L, Lichtman AH, In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res. 2003;63:6838–46.
  • Horak D, Babic M, Jendelova P, Herynek V, Trchova M, Likavcanova K, Effect of different magnetic nanoparticle coatings on the efficiency of stem cell labeling. J Magn Magn Mater. 2009;321:1539–47.
  • Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomed. 2007;2:23–39.
  • Stoll G, Bendszus M. Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience. 2009;158:1151–60.
  • Yang J, Liu J, Niu G, Chan KC, Wang R, Liu Y, In vivo MRI of endogenous stem/progenitor cell migration from subventricular zone in normal and injured developing brains. Neuroimage 2009;48:319–28.
  • Islam T, Josephson L. Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark. 2009;5: 99–107.
  • Rad AM, Iskander AS, Janic B, Knight RA, Arbab AS, Soltanian-Zadeh H. AC133+ progenitor cells as gene delivery vehicle and cellular probe in subcutaneous tumor models: a preliminary study. BMC Biotechnol. 2009;9:28.
  • Sykova E, Jendelova P. Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ. 2007;14: 1336–42.
  • Sykova E, Jendelova P. Magnetic resonance tracking of transplanted stem cells in rat brain and spinal cord. Neurodegener Dis. 2006;3:62–7.
  • Politi LS, Bacigaluppi M, Brambilla E, Cadioli M, Falini A, Comi G, Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis. Stem Cells. 2007;25:2583–92.
  • Cohen ME, Muja N, Fainstein N, Bulte JW, Ben-Hur T. Conserved fate and function of ferumoxides-labeled neural precursor cells in vitro and in vivo. J Neurosci Res. 2009; 10.1002/jnr.22277.
  • Dunning MD, Lakatos A, Loizou L, Kettunen M, French-Constant C, Brindle KM, Superparamagnetic iron oxide-labeled Schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS. J Neurosci. 2004;24:9799–810.
  • Medarova Z, Vallabhajosyula P, Tena A, Evgenov N, Pantazopoulos P, Tchipashvili V, In vivo imaging of autologous islet grafts in the liver and under the kidney capsule in non-human primates. Transplantation. 2009;87:1659–66.
  • Toso C, Vallee JP, Morel P, Ris F, Demuylder-Mischler S, Lepetit-Coiffe M, Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant. 2008;8:701–6.
  • Zhang S, He H, Lu W, Xu Q, Zhou B, Tang X. Tracking intrahepatically transplanted islets labeled with Feridex-polyethyleneimine complex using a clinical 3.0-T magnetic resonance imaging scanner. Pancreas. 2009;38:293–302.
  • Kriz J, Jirak D, Girman P, Berkova Z, Zacharovova K, Honsova E, Magnetic resonance imaging of pancreatic islets in tolerance and rejection. Transplantation. 2005;80:1596–603.
  • Evgenov NV, Pratt J, Pantazopoulos P, Moore A. Effects of glucose toxicity and islet purity on in vivo magnetic resonance imaging of transplanted pancreatic islets. Transplantation. 2008;85:1091–8.
  • Stuckey DJ, Carr CA, Martin-Rendon E, Tyler DJ, Willmott C, Cassidy PJ, Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells 2006;24:1968–75.
  • He G, Zhang H, Wei H, Wang Y, Zhang X, Tang Y, In vivo imaging of bone marrow mesenchymal stem cells transplanted into myocardium using magnetic resonance imaging: a novel method to trace the transplanted cells. Int J Cardiol. 2007;114:4–10.
  • Chapon C, Jackson JS, Aboagye EO, Herlihy AH, Jones WA, Bhakoo KK. An in vivo multimodal imaging study using MRI and PET of stem cell transplantation after myocardial infarction in rats. Mol Imaging Biol. 2009;11: 31–8.
  • Amsalem Y, Mardor Y, Feinberg MS, Landa N, Miller L, Daniels D, Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation. 2007;116(11 Suppl) I38–45.
  • Gilad AA, Winnard PT, Jr., van Zijl PC, Bulte JW. Developing MR reporter genes: promises and pitfalls. NMR Biomed. 2007;20:275–90.
  • Hoehn M, Himmelreich U, Kruttwig K, Wiedermann D. Molecular and cellular MR imaging: potentials and challenges for neurological applications. J Magn Reson Imaging. 2008;27:941–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.