38
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The malate synthase of Paracoccidioides brasiliensis Pb01 is required in the glyoxylate cycle and in the allantoin degradation pathway

, , , , &
Pages 734-744 | Received 02 Jun 2006, Accepted 07 Nov 2006, Published online: 04 Nov 2009

References

  • Kornberg HL. The role and control of the glyoxylate cycle in Escherichia coli. J Biochem 1966; 99: 1–11.
  • Kornberg HL, Krebs HA. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 1957; 179: 988–991.
  • Dixon GH, Kornberg HL, Lund P. Biochim Biophys Acta 1960; 41: 217–233.
  • Hartig A, Simon MM, Schuster T, . Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae. Nucleic Acids Res 1992; 20: 5677–5686.
  • Ornston LN, Ornston MK. Regulation of glyoxylate metabolism in Escherichia coli K-12. J Bacteriol 1969; 98: 1098–1108.
  • Trelease RN, Becker WM, Burker JJ. Cytochemical localization of malate synthase in glyoxysomes. J Cell Biol 1974; 60: 483–495.
  • Kunze M, Kragler F, Binder M, Hartig A, Gurvitz A. Targeting of malate synthase 1 to the peroxisomes of Saccharomyces cerevisiae cells depends on growth on oleic acid medium. Eur J Biochem 2002; 269: 915–922.
  • Mckinney JD, Höner zu Bentrup K, Muñoz-Elias EJ, . Persistence of Mycobacterium tuberculosis in macrophages micerequires the glyoxylate shunt enzyme isocitrate lyase. Nature 2000; 17: 735–738.
  • Lorenz MC, Fink GR. Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukary Cell 2002; 1: 657–662.
  • Rude TH, Toffaletti DL, Cox GM, Perfect JR. Relationship of the glyoxylate pathway to the pathogenesis of Cryptococcus neoformans. Infect Immun 2002; 70: 5684–5694.
  • Thines ER, Webwer RW, Talbot NJ. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appreorium turgor generation bsy Magnoporth grisea. Plant Cell 2000; 12: 1703–1708.
  • Lorenz MC, Bender JA, Fink GR. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryotic Cell 2004; 3: 1076–1087.
  • Barelle CJ, Priest CL, Maccallum DM, . Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cellular Micobiol 2006; 8: 961–971.
  • Brummer E, Castaneda E, Restrepo A. Paracoccidioidomycosis: an update. Clin Microbiol Microbiol Rev 1993; 6: 89–117.
  • San-Blas G, Niño-Veja G. Paracoccidoides brasiliensis: virulence and host response. Cihlar RL, Calderone RA. Fungal Pathogenesis: Principles and Clinical Applications. New York: Marcel Dekker, 2001; 205–226.
  • Carrero LL, Niño-Vega G, Teixeira MM, . New Paracoccidioides brasiliensis isolate reveals unexpected genomic variability in this human pathogen. Fungal Genet Biol 2008; 45: 605–612.
  • Felipe MS, Andrade RV, Arraes FB, . Transcriptional profiles of the human pathogenic fungus Paracoccidioides brasiliensis in mycelium and yeast cells. J Biol Chem 2005; 280: 24706–24714.
  • Costa M, Borges CL, Bailão AM, . Transcriptome profiling of Paracoccidioides brasiliensis yeast-phase cells recovered from infected mice brings new insights into fungal response upon host interaction. Microbiology 2007; 153: 4194–4207.
  • Bastos KP, Bailão AM, Borges CL, . The transcriptome analysis of early morphogenesis in Paracoccidioides brasiliensis mycelium reveals novel and induced genes potentially associated to the dimorphic process. BMC Microbiol 2007; 10: 7–29.
  • Nunes LR, Oliveira RC, Leite DB, . Trancriptome analysis of Paracoccidioides brasiliensis cells undergoing mycelium-to-yeast transition. Eukaryotic Cell 2005; 4: 2115–2128.
  • Bonfim SMRC, Cruz AHS, Jesuíno RSA, . Chitinase from Paracoccidoides brasiliensis: molecular cloning, structural, phylogenetic, expression and activity analysis. FEMS Immunol Med Mic 2006; 46: 269–283.
  • Bailão AM, Schrank A, Borges CL, . Differential gene expression by Paracoccidioides brasiliensis in host interaction conditions: representational difference analysis identifies candidate genes associated with fungal pathogenesis. Microbes Infect 2006; 12-13: 2686–2697.
  • Fava-Netto C. Estudos quantitativos sobre a fixação do complemento na Blastomicose Sul-Americana com antígenos polissacarídicos. Arq Cirurg Clín Exp 1995; 18: 197–254.
  • Restrepo A, Jiménez B. Growth of Paracoccidioides brasiliensis yeast phase in a chemically defined culture medium. J Clin Microbiol 1980; 12: 279–281.
  • Felipe MS, Andrade RV, Petrofeza SS, . Transcriptome characterization of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis by EST analysis. Yeast 2003; 20: 263–271.
  • ExPASY.org [homepage on the internet]. Expert Protein Analysis System. Available from: http://www.expasy.org
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DA. Basic local alignment search tools. J Mol Biol 1990; 215: 403–410.
  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 1997; 24: 4876–4882.
  • Del-Sal G, Manfioletti G, Scneider C. The CTAB – DNA precpition method: a common miniscale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Bio Techniques 1989; 7: 514–519.
  • Sambrook J, Russel DW. Molecular Cloning: A Laboratory Manual, 2th. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 2001.
  • Scioncorp.com [homepage on the internet]. Maryland: Scion Corporation. Available from: http://www.scioncorp.com/pages/scion_image_windows.htm
  • Ebel F, Schwienbacher M, Beyer J, . Analysis of the regulation, expression, and localization of the isocitrate lyase from Aspergillus fumigatus, a potential target for antifungal drug development. Fungal Genet Biol 2006; 43: 476–489.
  • Bradford MM. A dye binding assay for protein. Anal Biochem 1976; 72: 248–254.
  • Dixon GH, Kornberg HL. Assay methods for key enzymes of the glyoxylate cycle. J Biochem 1959; 72: 3P.
  • Polakis ES, Bartley W. Changes in the enzyme activities of Sccharomyces cerevisiae during aerobic growth on different carbon sources. J Biochem 1965; 97: 284–297.
  • Howard BR, Endrizzi JA, Remington SJ. Crystal structure of Escherichia coli malate synthse G complexed with magnesium and glyoxylate at 2.0 Å resolution: Mechanistic implications. Biochemistry 2000; 39: 3156–3168.
  • Molina I, Pellicer MT, Badia J, Aguilar J, Baldoma L. Molecular characterization of Escherichia coli malate synthase G. Differentiation with the malate synthase A isoenzyme. Eur J Biochem 1994; 224: 541–548.
  • White O, Eisen JA, Heidelberg JF, . Genome sequence of the radioresistent bacterium Deinococcus radiodurans R1. Science 1999; 286: 1571–1577.
  • Wang ZX, Brämer CO, Steinbüchei A. The glyoxylate cycle bypass of Ralstonia eutropha. FEMS Microbiol Lett 2003; 228: 63–71.
  • Nogales J, Guijo MI, Quesada A, Merchán F. Functional analysis of the malate synthase from Clamydomonas reinhardtii. Planta 2004; 219: 325–331.
  • Gould SJ, Keller GA, Subramani S. Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol 1987; 105: 2923–2931.
  • Gould SK, Keller GA, Subramani S. Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J Cell Biol 1988; 107: 897–905.
  • Valenciano S DE Lucas JR, Klei IV, Veenhuis M, Laborda F. Characterization of Aspergillus nidulans peroxisomes by immunoelectron mcroscopy. Arch Microbiol 1998; 170: 370–376.
  • Smith CV, Huang CC, Miczak A, . Biochemical and structure of malate synthase from Mycobacterium tuberculosis. J Biol Chem 2002; 278: 1735–1743.
  • Broad Institute.com [homepage on the internet]. Harvard: Broad Institute Comunity. Available from: http://www.broad.mit.edu/annotation/genome/paracoccidioides_brasiliensis.1/MultiHome.html
  • Chan M, Sim TS. Malate synthase from Streptomyces clavuligens NRRL 3585: cloning, molecular characterization and its control by acetate. Microbiology 1998; 144: 3229–3237.
  • Gaudy ET, Bojanowski R, Valentine RC, Wolfe RS. Ureidoglycolate synthetase of Streptococcus allantoicus. I. Measurement of glyoxylate and enzyme purification. J Bacteriol 1965; 90: 1525–1530.
  • Cooper TG. Metabolism abs Gene Expression. Strathern JN, Jones EW, Broach J. The Molecular Biology of the Yeast Saccharomyces. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 1982; 39–99.
  • Rodriguez D, Ginger RS, Baker A, Northcote DH. Nucleotide sequence analysis of a cDNA clone encoding malate synthase of castor bean (Ricinus communis) reveals homology to DAL7, a gene involved in allantoin degradation in Saccharomyces cerevisiae. Plant Mol Biol 1990; 15: 501–504.
  • Yoo HS, Cooper TG. The DAL7 promoter consists of multiple elements that cooperatively mediate regulation of the gene's expression. Mol Cell Biol 1989; 9: 3231–3243.
  • Sumrada R, Cooper TG. Oxaluric acid: a non-metabolized inducer of the allantoin degradative enzymes in Saccharomyces cerevisiae. J Bacteriol 1974; 117: 1240–1247.
  • Cooper TG, Mckelvey J, Sumrada RA. Oxalurate transport in Saccharomyces cerevisiae. J Bacteriol 1979; 139: 917–923.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.