Publication Cover
Archives of Physiology and Biochemistry
The Journal of Metabolic Diseases
Volume 119, 2013 - Issue 4
208
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Abnormalities of the cardiac stem and progenitor cell compartment in experimental and human diabetes

&
Pages 179-187 | Received 14 Mar 2013, Accepted 17 Apr 2013, Published online: 12 Jun 2013

References

  • Abdel-Latif A, Bolli R, Tleyjeh IM, et al. (2007). Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med, 167:989–97
  • Abraham MR, Henrikson CA, Tung L, et al. (2005). Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res, 97:159–67
  • Aksakal E, Akaras N, Kurt M, et al. (2011). The role of oxidative stress in diabetic cardiomyopathy: an experimental study. Eur Rev Med Pharmacol Sci, 15:1241–6
  • Aneja A, Tang WH, Bansilal S, et al. (2008). Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med, 121:748–57
  • Anversa P, Kajstura J, Leri A, Bolli R. (2006). Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation, 113:1451–63
  • Asrih M, Steffens S. (2012). Emerging role of epigenetics and miRNA in diabetic cardiomyopathy. Cardiovasc Pathol, 22:117–25
  • Assmus B, Honold J, Schächinger V, et al. (2006). Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med, 355:1222–32
  • Balestrieri ML, Schiano C, Felice F, et al. (2008). Effect of low doses of red wine and pure resveratrol on circulating endothelial progenitor cells. J Biochem, 143:179–86
  • Bearzi C, Rota M, Hosoda T, et al. (2007). Human cardiac stem cells. Proc Natl Acad Sci USA, 104:14068–73
  • Behrends M, Schulz R, Post H, et al. (2000). Inconsistent relation of MAPK activation to infarct size reduction by ischemic preconditioning in pigs. Am J Physiol Heart Circ Physiol, 279:H1111–19
  • Beltrami AP, Barlucchi L, Torella D, et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114:763–76
  • Bolli R, Chugh AR, D'Amario D, Loughran JH, et al. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 378:1847–57
  • Boudina S, Abel ED. (2007). Diabetic cardiomyopathy revisited. Circulation, 115:3213–23
  • Cai L, Li W, Wang G, et al. (2002). Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes, 51:1938–48
  • D’Amario D, Cabral-Da-Silva MC, Zheng H, et al. (2011a). Insulin-like growth factor-1 receptor identifies a pool of human cardiac stem cells with superior therapeutic potential for myocardial regeneration. Circ Res, 108:1467–81
  • D'Amario D, Fiorini C, Campbell PM, et al. (2011b). Functionally competent cardiac stem cells can be isolated from endomyocardial biopsies of patients with advanced cardiomyopathies. Circ Res, 108:857–61
  • Dawn B, Stein AB, Urbanek K, et al. (2005). Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci USA, 102:3766–71
  • De Vries JE, Vork MM, Roemen TH, et al. (1997). Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res, 38:1384–94
  • Delucchi F, Berni R, Frati C, et al. (2012). Resveratrol treatment reduces cardiac progenitor cell dysfunction and prevents morpho-functional ventricular remodeling in type-1 diabetic rats. PLoS One, 7:e39836
  • Dib N, McCarthy P, Campbell A, et al. (2005). Feasibility and safety of autologous myoblast transplantation in patients with ischemic cardiomyopathy. Cell Transplant, 14:11–19
  • Ellison GM, Torella D, Dellegrottaglie S, et al. (2011). Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J Am Coll Cardiol, 58:977–86
  • Fiordaliso F, Leri A, Cesselli D, et al. (2001). Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes, 50:2363–75
  • Fischer KM, Cottage CT, Wu W, et al. (2009). Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase. Circulation, 120:2077–87
  • Frustaci A, Kajstura J, Chimenti C, et al. (2000). Myocardial cell death in human diabetes. Circ Res, 87:1123–32
  • Gonzales C, Pedrazzini T. (2009). Progenitor cell therapy for heart disease. Exp Cell Res, 315:3077–85
  • Gurusamy N, Ray D, Lekli I, Das DK. (2010). Red wine antioxidant resveratrol modified cardiac stem cells regenerate infarcted myocardium. J Cell Mol Med, 14:2235–9
  • Hansen JL, Theilade J, Aplin M, Sheikh SP. (2006). Role of G-protein-coupled receptor kinase 2 in the heart – do regulatory mechanisms open novel therapeutic perspectives? Trends Cardiovasc Med, 16:169–77
  • Herder C, Kolb H, Koenig W, et al. (2006). Association of systemic concentrations of macrophage migration inhibitory factor with impaired glucose tolerance and type 2 diabetes: results from the Cooperative Health Research in the Region of Augsburg, Survey 4 (KORA S4). Diabetes Care, 29:368–71
  • Hosoda T, Zheng H, Cabral-da-Silva M, et al. (2011). Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation, 123:1287–96
  • Hu S, Liu S, Zheng Z, et al. (2011). Isolated coronary artery bypass graft combined with bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure: a single-center, randomized, double-blind, placebo-controlled clinical trial. J Am Coll Cardiol, 57:2409–15
  • Jian B, Yang S, Chaudry IH, Raju R. (2012). Resveratrol improves cardiac contractility following trauma-hemorrhage by modulating Sirt1. Mol Med, 18:209–14
  • Katare RG, Caporali A, Oikawa A, et al. (2010a). Vitamin B1 analog benfotiamine prevents diabetes-induced diastolic dysfunction and heart failure through Akt/Pim-1-mediated survival pathway. Circ Heart Fail, 3:294–305
  • Katare R, Caporali A, Emanueli C, Madeddu P. (2010b). Benfotiamine improves functional recovery of the infarcted heart via activation of pro-survival G6PD/Akt signaling pathway and modulation of neurohormonal response. J Mol Cell Cardiol, 49:625–38
  • Katare R, Caporali A, Zentilin L, et al. (2011). Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res, 108:1238–51
  • Katare R, Oikawa A, Cesselli D, et al. (2013). Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes. Cardiovasc Res, 97:55–65
  • Khan M, Akhtar S, Mohsin S, et al. (2011). Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells Dev, 20:67–75
  • Laviola L, Leonardini A, Melchiorre M, et al. (2012). Glucagon-like peptide-1 counteracts oxidative stress-dependent apoptosis of human cardiac progenitor cells by inhibiting the activation of the c-Jun N-terminal protein kinase signaling pathway. Endocrinology, 153:5770–81
  • Leonardini A, Laviola L, Orlando MR, et al. (2012). Exendin-4 inhibits palmitate-induced apoptosis of human cardiac progenitor cells. Diabetologia, 55:S57
  • Leri A, Claudio PP, Li Q, et al. (1998). Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest, 101:1326–42
  • Leri A, Kajstura J, Anversa P. (2005). Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev, 85:1373–416
  • Li Y, Shelat H, Geng YJ. (2012a). IGF-1 prevents oxidative stress induced-apoptosis in induced pluripotent stem cells which is mediated by microRNA-1. Biochem Biophys Res Commun, 426:615–19
  • Li Y, Yang CM, Xi Y, et al. (2012b). MicroRNA-1/133 targeted dysfunction of potassium channels KCNE1 and KCNQ1 in human cardiac progenitor cells with simulated hyperglycemia. Int J Cardiol, [In press] Available at: http://www.sciencedirect.com/science/article/pii/S0167527312014350. Available online 14 November 2012
  • Linke A, Müller P, Nurzynska D, et al. (2005). Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA, 102:8966–71
  • Madonna R, Di Napoli P, Massaro M, et al. (2005). Simvastatin Attenuates Expression of Cytokine-inducible Nitric-oxide Synthase in Embryonic Cardiac Myoblasts. J Biol Chem, 280:13503–11
  • Makkar RR, Smith RR, Cheng K, et al. (2012). Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet, 379:895–904
  • Mandavia CH, Aroor AR, Demarco VG, Sowers JR. (2013). Molecular and metabolic mechanisms of cardiac dysfunction in diabetes. Life Sci, 92:601–8
  • Menasche P, Hagege AA, Vilquin JT, et al. (2003). Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol, 41:1078–83
  • Messina E, Giacomello A. (2006). Diabetic cardiomyopathy: a “cardiac stem cell disease” involving p66Shc, an attractive novel molecular target for heart failure therapy. Circ Res, 99:1–2
  • Migliaccio E, Giorgio M, Mele S, et al. (1999). The p66Shc adaptor protein controls oxidative stress response and life span in mammals. Nature, 402:309–13
  • Murarka S, Movahed MR. (2010). Diabetic cardiomyopathy. J Card Fail, 16:971–9
  • Muraski JA, Fischer KM, Wu W, et al. (2008). Pim-1 kinase antagonizes aspects of myocardial hypertrophy and compensation to pathological pressure overload. Proc Natl Acad Sci USA, 105:13889–94
  • Natalicchio A, Tortosa F, Perrini S, et al. (2011). p66Shc, a multifaceted protein linking Erk signalling, glucose metabolism, and oxidative stress. Arch Physiol Biochem, 117:116–24
  • Pacini S, Pellegrini M, Migliaccio E, et al. (2004). P66SHC promotes apoptosis and antagonizes mitogenic signalling in T cells. Mol Cell Biol, 24:1747–57
  • Palsamy P, Subramanian S. (2009). Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. Chem Biol Interact, 179:356–62
  • Paneni F, Mocharla P, Akhmedov A, et al. (2012). Gene silencing of the mitochondrial adaptor p66(Shc) suppresses vascular hyperglycemic memory in diabetes. Circ Res, 111:278–89
  • Park SJ, Ahmad F, Philp A, et al. (2012). Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell, 148:421–33
  • Park TS, Goldberg IJ. (2012). Sphingolipids, lipotoxic cardiomyopathy, and cardiac failure. Heart Fail Clin, 8:633–41
  • Petrovski G, Gurusamy N, Das DK. (2011). Resveratrol in cardiovascular health and disease. Ann NY Acad Sci, 1215:22–33
  • Pischon T, Girman CJ, Hotamisligil GS, et al. (2004). Plasma adiponectin levels and risk of myocardial infarction in men. JAMA, 291:1730–7
  • Poornima IG, Parikh P, Shannon RP. (2006). Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res, 98:596–605
  • Rajamani U, Essop MF. (2010). Hyperglycemia-mediated activation of the hexosamine biosynthetic pathway results in myocardial apoptosis. Am J Physiol Cell Physiol, 299:C139–47
  • Rota M, LeCapitaine N, Hosoda T, et al. (2006). Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res, 99:42–52
  • Rota M, Padin-Iruegas ME, Misao Y, et al. (2008). Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res, 103:107–16
  • Rubler S, Dlugash J, Yuceoglu YZ, et al. (1972). New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol, 30:595–602
  • Serpi R, Tolonen AM, Tenhunen O, et al. (2009). Divergent effects of losartan and metoprolol on cardiac remodeling, c-kit+ cells, proliferation and apoptosis in the left ventricle after myocardial infarction. Clin Transl Sci, 2:422–30
  • Shibata R, Numaguchi Y, Matsushita K, et al. (2008). Usefulness of adiponectin to predict myocardial salvage following successful reperfusion in patients with acute myocardial infarction. Am J Cardiol, 101:1712–15
  • Smits PC, van Geuns RJ, Poldermans D, et al. (2003). Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol, 42:2063–9
  • Stilli D, Lagrasta C, Berni R, et al. (2007). Preservation of ventricular performance at early stages of diabetic cardiomyopathy involves changes in myocyte size, number and intercellular coupling. Basic Res Cardiol, 102:488–99
  • Strauer BE, Brehm M, Zeus T, et al. (2005). Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol, 46:1651–8
  • Strauer BE, Youssef M, Schannwell CM. (2010). The acute and long-term effects of intracoronary stem cell transplantation in 191 patients with chronic heart failure: the STAR-heart study. Eur J Heart Fail, 12:721–9
  • Sulaiman M, Matta MJ, Sunderesan NR, et al. (2010). Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol, 298:H833–43
  • Tang XL, Rokosh G, Sanganalmath SK, et al. (2010). Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation, 121:293–305
  • Thirunavukkarasu M, Penumathsa SV, Koneru S, et al. (2007). Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: Role of nitric oxide, thioredoxin, and heme oxygenase. Free Radic Biol Med, 43:720–9
  • Tschöpe C, Walther T, Escher F, et al. (2005). Transgenic activation of the kallikrein-kinin system inhibits intramyocardial inflammation, endothelial dysfunction and oxidative stress in experimental diabetic cardiomyopathy. FASEB J, 19:2057–9
  • Ungvari Z, Bagi Z, Feher A, et al. (2010). Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol, 299:H18–24
  • Urbanek K, Rota M, Cascapera S, et al. (2005). Cardiac stem cells possess growth factor receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and longterm survival. Circ Res, 97:663–73
  • van Rooij E, Olson EN. (2007). MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest, 117:2369–76
  • Wei CD, Li Y, Zheng HY, et al. (2012). Globular adiponectin protects H9c2 cells from palmitate-induced apoptosis via Akt and ERK1/2 signaling pathways. Lipids Health Dis, 11:135
  • Wen Z, Zheng S, Zhou C, et al. (2011). Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. J Cell Mol Med, 15:1032–43
  • Wen Z, Mai Z, Zhang H, et al. (2012a). Local activation of cardiac stem cells for post-myocardial infarction cardiac repair. J Cell Mol Med, 16:2549–63
  • Wen Z, Zheng S, Zhou C, et al. (2012b). Bone marrow mesenchymal stem cells for post-myocardial infarction cardiac repair: micro-RNAs as novel regulators. J Cell Mol Med, 16:657–71
  • Xiao J, Luo X, Lin H, et al. (2007). MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem, 282:12363–7
  • Yang B, Lin H, Xiao J, et al. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med, 13:486–91
  • Younce CW, Wang K, Kolattukudy PE. (2010). Hyperglycaemia-induced cardiomyocyte death is mediated via MCP-1 production and induction of a novel zinc-finger protein MCPIP. Cardiovasc Res, 87:665–74
  • Yu XY, Chen HM, Liang JL, et al. (2011). Hyperglycemic myocardial damage is mediated by proinflammatory cytokine: macrophage migration inhibitory factor. PLoS One, 6:e16239
  • Zhang H, Morgan B, Potter BJ, et al. (2010). Resveratrol improves left ventricular diastolic relaxation in Type 2 diabetes by inhibiting oxidative/nitrative stress: in vivo demonstration with magnetic resonance imaging. Am J Physiol Heart Circ Physiol, 299:H985–94
  • Zheng S, Zhou C, Weng Y, et al. (2011). Improvements of cardiac electrophysiologic stability and ventricular fibrillation threshod in rats with myocardial infarction treated with cardiac stem cells. Crit Care Med, 39:1082–8
  • Zhou L, Azfer A, Niu J, et al. (2006). Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res, 98:1177–85

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.