19
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prospective comparative analysis of the angiogenic capacity of monocytes and CD133+ cells in a murine model of hind limb ischemia

, , , , , , , , , , & show all
Pages 1041-1051 | Published online: 24 Nov 2009

References

  • Asahara T, Murohara T, Sullivan A, Silver M, van der ZR, Li T, . Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275(5302):964–7.
  • Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, . Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000; 953:952–8.
  • Doyle B. Endothelial Progenitor cells. Endothelium 2006; 13:403–10.
  • Ingram DA, Caplice NM, Yoder MC. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood Sep 1; 2005; 106(5):1525–31.
  • Yoder MC, Mead LE, Prater D, Prater D, Krier TR, Mroueh KN, Li F, . Re-defining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109(5):1801–9.
  • Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker P, Verfaillie C. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002; 109:337–46.
  • Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, . Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004; 104(9):2752–60.
  • Fernandez Pujol B, Lucibello FC, Gehling UM, Lindemann K, Weidner N, Zuzarte ML, . Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 2000; 65(5):287–300.
  • Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J, . Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 2001; 49(3):671–80.
  • Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/ macrophages and secrete angiogenic growth factors. Circulation 2003; 107(8):1164–69.
  • Romagnani P, Annunziato F, Liotta F, Lazzeri E, Mazzinghi B, Frosali F, . CD14 CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res 2005; 97:314–22.
  • Case J, Mead LE, Bessler WK, Prater D, White HA, Saadatzadeh MR, . Human CD34 AC133 VEGFR-2 cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Experimental Hematology 2007; 35:1109–18.
  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, . Failure of blood-island formation and vasculogenesis in Flk-1 deficient mice. Nature 1995; 376:62–6.
  • Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursor for hematopoietic and endothelial cells. Development 1998; 125(4):725–32.
  • Wang L. Endothelial and hematopoietic cell fate of human embryonic stem cells. Trend Cardiovasc Med 2006; 16(3):89–94.
  • Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, . Evidence for circuolating bone marrow-derived endothelial cells. Blood 1998; 92(2):362–7.
  • Bailey AS, Jiang S, Afentoulis M, Baumann CI, Schroeder DA, Olson SB, . Transplanted adult hematopoietic stem cells differentiate into functional endothelial cells. Blood 2004; 103(1):13–9.
  • Cogle CR, Scott EW. The hemangioblast: cradle to clinic. Exp Hematol 2004; 32(10):885–90.
  • Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M, . In vitro differentiation of endothe-In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000; 95(10):3106–12.
  • Quirici N, Soligo D, Caneva L, Servida F, Bossolasco P, Deliliers GL. Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br J Haematol 2001; 115(1):186–94.
  • de Wynter EA, Buck D, Hart C, Heywood R, Coutinho LH, Clayton A, . CD34+ AC133+ cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors. Stem Cells 1998; 16(6):387–96.
  • Elsheikh E, Uzunel M, He Z, Holgersson J, Nowak G, Sumitran-Holgersson S. Only a specific subject of human peripheral blood monocytes has endothelial-like functional capacity. Blood 2005; 106:2347–55.
  • Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, . Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Cir Res. Aug 61999; 85(3):221–8.
  • Murayama T, Tepper OM, Silver M, Ma H, Losordo DW, Isner JM, . Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 2002; 30(8):967–72.
  • Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, Yoon YS, Milliken C, . Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 2003; 107(3):461–468.
  • Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, . Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation. Feb 62001; 103(5):634–7.
  • Iba O, Matsubara H, Nozawa Y, Fujiyama S, Amano K, Mori Y, . Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs. Circulation 2002; 106(15):2019–25.
  • Fuchs S, Baffour R, Zhou YF, Shou M, Pierre A, Tio FO, . Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001; 37(6):1726–32.
  • Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Amano K, Iba O, . Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioescler Thromb Vasc Biol. Nov 12002; 22(11):1804–10.
  • Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, . Circulating endothelial progenitor cells, vascular function and cardiovascular risk. N Engl J Med 2003; 348(7):593–600.
  • Hristov M, Weber C. Endothelial progenitor cells: characterization, pathophysiology and possible clinical relevance. J Cell Mol Med 2004; 8:498–508.
  • Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 2004; 95(4):343–53.
  • Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 2003; 9:702–12.
  • Murasawa S, Asahara T. Endothelial progenitor cells for vasculogenesis. Physiology (Bethesda) 2005; 20:36–42.
  • Blann AD. Assessment of endothelial dysfunction: focus on atherothrombotic disease. Pathophysiol Haemost Thromb 2003; 33:256–61.
  • López-Holgado N, Alberca M, Sánchez-Guijo F, Villarón E, Almeida J, Martín A, . Short-term endothelial progenitor cell colonies are composed of monocytes and do not acquire endothelial markers. Cytotherapy 2007; 9(1):14–22.
  • Glod J, Kobiler D, Noel M, Koneru R, Lehrer S, Medina D, . Monocytes form a vascular barrier and participate in vessel repair after brain injury. Blood. Feb 12006; 107(3):940–6.
  • Del Cañizo MC, Fernández ME, López A, Vidriales B, Villarón E, Arroyo JL, . Immunophenotypic analysis of mielodysplastic syndromes. Hematologica 2003; 88:402–7.
  • Eguchi M, Masuda H, Asahara T. Endotelial progenitor cells for postnatal vasculogenesis. Clin Exp Nephrol 2007; 11:18–25.
  • Cogle CR, Madlambayan GJ, Hubsher G, Beckman C, Speisman R, Tran-Son-Tay R. Marrow cell therapies for cardiovascular diseases. Experimental Hematology 2008; 36:687–94.
  • Aranguren XL, McCue JD, Hendrickx B, Zhu XH, Du F, Chen E, . Multipotent adult progenitor cells sustain function of ischemic limbs in mice. J Clin Invest 2008; 118:505–14.
  • Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC. CD34- blood derived human endothelial cell progenitors. Stem Cells 2001; 19(4):304–12.
  • Heil M, Ziegelhoeffer T, Pipp F, Kostin S, Martin S, Clauss M, . Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol 2002; 283(6):2411–19.
  • Fujiyama S, Amano K, Uehira , Yoshida M, Nishiwaki Y, Nozawa Y, . Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelization as endothelial progenitor cells. Circ Res 2003; 93(10):980–9.
  • Capoccia BJ, Shepherd RM, Link DC. G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism. Blood 2006; 108(7):2438–45.
  • Mizrak D, Brittan M, Alison MR. CD133: molecule of the moment. J Pathol 2008; 214:3–9.
  • Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, . Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7(4):430–6.
  • Kawamoto A, Asahara T, Losordo DW. Transplantation of endothelial progenitor cells for therapeutic neovascularization. Cardiovasc Radiat Med 2002 Jul-Dec; 3(3–4):221–5.
  • Kalka C, Masuda H, Takahashi T, Gordon R, Tepper O, Gravereaux E, . Vascular endothelial growth factor (165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 2000; 86(12):1198–202.
  • Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, . Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 2004; 94(2):230–8.
  • Maddedu P, Emanueli C, Pelosi E, Salis MB, Cerio AM, Bonanno G, . Transplantation of low dose CD34+ KDR+ cells promotes vascular and muscular regeneration in ischemic limbs. FASEB J 2004; 18(14):1737–39.
  • Herold J, Pipp F, Fernandez B, Xing Z, Heil M, Tillmanns H, . Transplantation of monocytes: a novel strategy for in vivo augmentation of collateral vessel growth. Human Gene Therapy 2004; 15:1–12.
  • Silvestre JS, Golosa A, Brun V, Potteaux S, Esposito B, Duriez M, . Transplantation of bone-marrow derived mononuclear cells in ischemic apolipoprotein E-knockout mice accelerates atherosclerosis without altering plaque composition. Circulation 2003; 108:2839–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.