80
Views
0
CrossRef citations to date
0
Altmetric
INVITED REVIEW

Application of induced pluripotent stem cells to hematologic disease

&
Pages 980-989 | Published online: 24 Nov 2009

References

  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.
  • Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, . Disease-specific induced pluripotent stem cells. Cell. 2008;134:877–86.
  • Byrne JA, Pedersen DA, Clepper LL, Nelson M, Sanger WG, Gokhale S, . Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature. 2007;450:497–502.
  • Choi KD, Yu J, Smuga-Otto K, Salvagiotto G, Rehrauer W, Vodyanik M, . Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells. 2009;27:559–67.
  • Taura D, Noguchi M, Sone M, Hosoda K, Mori E, Okada Y, . Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Lett. 2009;583:1029–33.
  • Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80.
  • Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L, Lindgren A, . Directed differentiation of human induced pluripotent stem cells generates active motor neurons. Stem Cells. 2009;27:806–11.
  • Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, . Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007;1:55–70.
  • Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313–7.
  • Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, . in vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448:318–24.
  • Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, . iPS cells produce viable mice through tetraploid complementation. Nature. 2009;461:86–9.
  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, . Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.
  • Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, . Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451:141–6.
  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, . Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.
  • Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, . Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA. 2008;105:2883–8.
  • Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, . Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell. 2008;133:250–64.
  • Stadtfeld M, Brennand K, Hochedlinger K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol. 2008;18:890–4.
  • Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, . Oct4-induced pluripotency in adult neural stem cells. Cell. 2009;136:411–9.
  • Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell. 2008;132:567–82.
  • Feng B, Jiang J, Kraus P, Ng JH, Heng JC, Chan YS, . Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol. 2009;11:197–203.
  • Zhao R, Daley GQ. From fibroblasts to iPS cells: induced pluripotency by defined factors. J Cell Biochem. 2008;105:949–55.
  • Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell. 2007;1:39–49.
  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, . Generation of induced pluripotent stem cells without c-Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26:101–6.
  • Wernig M, Meissner A, Cassady JP, Jaenisch R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell. 2008;2:10–2.
  • Martinato F, Cesaroni M, Amati B, Guccione E. Analysis of c-Myc-induced histone modifications on target chromatin. PLoS ONE 2008;3:e3650.
  • Kidder BL, Yang J, Palmer S. Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. PLoS ONE 2008;3:e3932.
  • Sridharan R, Tchieu J, Mason MJ, Yachechko R, Kuoy E, Horvath S, . Role of the murine reprogramming factors in the induction of pluripotency. Cell. 2009;136:364–77.
  • Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science. 2008;320:97–100.
  • Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, . MicroRNA let-7a down-regulates c-Myc and reverts C-MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 2007;67:9762–70.
  • Polesskaya A, Cuvellier S, Naguibneva I, Duquet A, Moss EG, Harel-Bellan A. Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes Dev. 2007;21:1125–38.
  • Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, . Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J. 2009;28:347–58.
  • Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S, . Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet. 2009;41:843–8.
  • Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, . Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol. 2009;27:743–5.
  • Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, . A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature. 2009.
  • Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, . Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature. 2009;460:1149–53.
  • Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, . Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature. 2009;460:1145–8.
  • Li H, Collado M, Villasante A, Strati K, Ortega S, Canamero M, . The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature. 2009;460:1136–9.
  • Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, . Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature. 2009;460:1140–4.
  • Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, . Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008;321:699–702.
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, . LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–9.
  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322:949–53.
  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008;322:945–9.
  • Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, . piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009.
  • Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009.
  • Wilson MH, Coates CJ, George A Jr. PiggyBac transposon-mediated gene transfer in human cells. Mol Ther. 2007;15:139–45.
  • Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature. 2005;436:221–6.
  • Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, . Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324:797–801.
  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, . Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4:381–4.
  • Keenen B, de la Serna IL. Chromatin remodeling in embryonic stem cells: regulating the balance between pluripotency and differentiation. J Cell Physiol. 2009;219:1–7.
  • Meshorer E, Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol. 2006;7:540–6.
  • Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, . Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol. 2008;26:795–7.
  • Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, . Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. 2008;26:1269–75.
  • Liang J, Wan M, Zhang Y, Gu P, Xin H, Jung SY, . Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat Cell Biol. 2008;10:731–9.
  • Baltus GA, Kowalski MP, Tutter AV, Kadam S. A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J Biol Chem. 2009;284:6998–7006.
  • Ng JH, Heng JC, Loh YH, Ng HH. Transcriptional and epigenetic regulations of embryonic stem cells. Mutat Res. 2008;647:52–8.
  • Epsztejn-Litman S, Feldman N, Abu-Remaileh M, Shufaro Y, Gerson A, Ueda J, . De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol. 2008;15:1176–83.
  • Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell. 2008;3:568–74.
  • Li JY, Pu MT, Hirasawa R, Li BZ, Huang YN, Zeng R, . Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol Cell Biol. 2007;27:8748–59.
  • Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, . Dissecting direct reprogramming through integrative genomic analysis. Nature. 2008;454:49–55.
  • Todorova MG, Fuentes E, Soria B, Nadal A, Quesada I. Lysophosphatidic acid induces Ca2+ mobilization and c-Myc expression in mouse embryonic stem cells via the phospholipase C pathway. Cell Signal. 2009;21:523–8.
  • Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11–21.
  • Adamo L, Zhang Y, Garcia-Cardena G. AICAR activates the pluripotency transcriptional network in embryonic stem cells and induces KLF4 and KLF2 expression in fibroblasts. BMC Pharmacol. 2009;9:2.
  • Lee EK, Bae GU, You JS, Lee JC, Jeon YJ, Park JW, . Reversine increases the plasticity of lineage-committed cells toward neuroectodermal lineage. J Biol Chem. 2009;284:2891–901.
  • Marson A, Foreman R, Chevalier B, Bilodeau S, Kahn M, Young RA, . Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell. 2008;3:132–5.
  • Cole MF, Johnstone SE, Newman JJ, Kagey MH, Young RA. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev. 2008;22:746–55.
  • Doble BW, Woodgett JR. Exploring pluripotency with chemical genetics. Cell Stem Cell. 2009;4:98–100.
  • Bone HK, Damiano T, Bartlett S, Perry A, Letchford J, Ripoll YS, . Involvement of GSK-3 in regulation of murine embryonic stem cell self-renewal revealed by a series of bisindolylmaleimides. Chem Biol. 2009;16:15–27.
  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, . The ground state of embryonic stem cell self-renewal. Nature. 2008;453:519–23.
  • Lyssiotis CA, Foreman RK, Staerk J, Garcia M, Mathur D, Markoulaki S, . Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci USA. 2009;106:8912–7.
  • Vallier L, Mendjan S, Brown S, Chng Z, Teo A, Smithers LE, . Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development. 2009.
  • Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, . Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008;26:1276–84.
  • Loh YH, Agarwal S, Park IH, Urbach A, Huo H, Heffner GC, . Generation of induced pluripotent stem cells from human blood. Blood. 2009;113:5476–9.
  • Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, . Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature. 2009;460:53–9.
  • Maherali N, Hochedlinger K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell. 2008;3:595–605.
  • Daley GQ, Lensch MW, Jaenisch R, Meissner A, Plath K, Yamanaka S. Broader implications of defining standards for the pluripotency of iPSCs. Cell Stem Cell. 2009;4:200–1; author reply 2.
  • Mali P, Ye Z, Hommond HH, Yu X, Lin J, Chen G, . Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells. 2008;26:1998–2005.
  • Ledran MH, Krassowska A, Armstrong L, Dimmick I, Renstrom J, Lang R, . Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell. 2008;3:85–98.
  • Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell. 2002;109:29–37.
  • Wang Y, Yates F, Naveiras O, Ernst P, Daley GQ. Embryonic stem cell-derived hematopoietic stem cells. Proc Natl Acad Sci USA. 2005;102:19081–6.
  • McKinney-Freeman SL, Naveiras O, Yates F, Loewer S, Philitas M, Curran M, . Surface antigen phenotypes of hematopoietic stem cells from embryos and murine embryonic stem cells. Blood. 2009;114:268–78.
  • Rideout W 3rd, Hochedlinger K, Kyba M, Daley GQ, Jaenisch R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell. 2002;109:17–27.
  • Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, . Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318:1920–3.
  • McGonigle GJ, Lappin TR, Thompson A. Grappling with the HOX network in hematopoiesis and leukemia. Front Biosci. 2008;13:4297–308.
  • Abramovich C, Humphries RK. Hox regulation of normal and leukemic hematopoietic stem cells. Curr Opin Hematol. 2005;12:210–6.
  • Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, McKinney-Freeman S, . BMP and Wnt specify hematopoietic fate by activation of the Cdx–Hox pathway. Cell Stem Cell. 2008;2:72–82.
  • Davidson AJ, Ernst P, Wang Y, Dekens MP, Kingsley PD, Palis J, . cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature. 2003;425:300–6.
  • Wang Y, Yabuuchi A, McKinney-Freeman S, Ducharme DM, Ray MK, Chawengsaksophak K, . Cdx gene deficiency compromises embryonic hematopoiesis in the mouse. Proc Natl Acad Sci USA. 2008;105:7756–61.
  • McKinney-Freeman SL, Lengerke C, Jang IH, Schmitt S, Wang Y, Philitas M, . Modulation of murine embryonic stem cell-derived CD41+ c-kit+ hematopoietic progenitors by ectopic expression of Cdx genes. Blood. 2008;111:4944–53.
  • Nemeth MJ, Bodine DM. Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways. Cell Res. 2007;17:746–58.
  • Malhotra S, Kincade PW. Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell. 2009;4:27–36.
  • Murdoch B, Chadwick K, Martin M, Shojaei F, Shah KV, Gallacher L, . Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc Natl Acad Sci USA. 2003;100:3422–7.
  • Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, . Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003;423:448–52.
  • Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM, . Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell. 2008;2:274–83.
  • Scheller M, Huelsken J, Rosenbauer F, Taketo MM, Birchmeier W, Tenen DG, . Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. Nat Immunol. 2006;7:1037–47.
  • Kirstetter P, Anderson K, Porse BT, Jacobsen SE, Nerlov C. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol. 2006;7:1048–56.
  • Vijayaragavan K, Szabo E, Bosse M, Ramos-Mejia V, Moon RT, Bhatia M. Noncanonical Wnt signaling orchestrates early developmental events toward hematopoietic cell fate from human embryonic stem cells. Cell Stem Cell. 2009;4:248–62.
  • Naito AT, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A, . Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci USA. 2006;103:19812–7.
  • Byrd N, Becker S, Maye P, Narasimhaiah R, St-Jacques B, Zhang X, . Hedgehog is required for murine yolk sac angiogenesis. Development. 2002;129:361–72.
  • Dyer MA, Farrington SM, Mohn D, Munday JR, Baron MH. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development. 2001;128:1717–30.
  • Nagase M, Nagase T, Koshima I, Fujita T. Critical time window of hedgehog-dependent angiogenesis in murine yolk sac. Microvasc Res. 2006;71:85–90.
  • Gering M, Patient R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev Cell. 2005;8:389–400.
  • Astorga J, Carlsson P. Hedgehog induction of murine vasculogenesis is mediated by Foxf1 and Bmp4. Development. 2007;134:3753–61.
  • Eilken HM, Nishikawa S, Schroeder T. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature. 2009;457:896–900.
  • Taoudi S, Gonneau C, Moore K, Sheridan JM, Blackburn CC, Taylor E, . Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherin+CD45+ pre-definitive HSCs. Cell Stem Cell. 2008;3:99–108.
  • Trowbridge JJ, Scott MP, Bhatia M. Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration. Proc Natl Acad Sci USA. 2006;103:14134–9.
  • Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P, . Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell. 2008;14:238–49.
  • Kumano K, Chiba S, Kunisato A, Sata M, Saito T, Nakagami-Yamaguchi E, . Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity. 2003;18:699–711.
  • Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C, . Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol. 2005;6:314–22.
  • Goessling W, North TE, Loewer S, Lord AM, Lee S, Stoick-Cooper CL, . Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell. 2009;136:1136–47.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.