109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

CD4+ CD25+ regulatory T cells ameliorate Behcet's disease-like symptoms in a mouse model

, , , &
Pages 835-847 | Received 01 Jul 2010, Accepted 06 Mar 2011, Published online: 21 Apr 2011

References

  • Shimizu T. Behcet disease (Behcet syndrome). Semin Arthritis Rheum. 1979;8:223–60.
  • Behcet H. Ueber rezidivierende, aphthoese durch ein Virus verursachte Geschwuere am Mund, am Auge und an den Genitalien. Dermatol Wochenschr. 1937;105:1152–7.
  • Lee S, Bang D, Cho YH, Lee ES, Sohn S. Polymerase chain reaction reveals herpes simplex virus DNA in saliva of patients with Behcet's disease. Arch Dermatol Res. 1996;288:179–83.
  • Lee ES, Lee S, Bang D, Sohn S, Park C, Lee K. Herpes simplex virus detection by polymerase chain reaction in intestinal ulcer of patients with Behcet's disease. J Invest Dermatol. 1993;101:474.
  • Bang D, Yoon KH, Chung HG, Choi EH, Lee ES, Lee S. Epidemiological and clinical features of Behcet's disease in Korea. Yonsei Med J. 1997;38:428–36.
  • Lee ES, Lee S, Bang D, Sohn S. Detection of herpes simplex virus DNA by polymerase chain reaction in genital ulcer of patients with Behcet's disease. Revue du Rhumatisme. 1996;63:532.
  • Sohn S, Lee ES, Bang D, Lee S. Behçet's disease-like symptoms induced by the Herpes simplex virus in ICR mice. Eur J Dermatol. 1998;8:21–3.
  • Kim HJ, Bang D, Lee SH, Yang DS, Kim DH, Lee KH, . Behcet's syndrome in Korea: a look at the clinical picture. Yonsei Med J. 1988;29:72–8.
  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.
  • Sakaguchi S. Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6:345–52.
  • Piccirillo CA, Shevach EM. Naturally-occurring CD4+ CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin Immunol. 2004;16:81–8.
  • Thompson C, Powrie F. Regulatory T cells. Curr Opin Pharmacol. 2004;4:408–14.
  • Stephens GL, Shevach EM. Foxp3+ regulatory T cells: selfishness under scrutiny. Immunity. 2007;27:417–9.
  • Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G. Ex vivo isolation and characterization of CD4+ CD25+ T cells with regulatory properties from human blood. J Exp Med. 2001;193:1303–10.
  • Jonuleit H, Schmitt E, Kakirman H, Stassen M, Knop J, Enk AH. Infectious tolerance: human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) T helper cells. J Exp Med. 2002;196:255–60.
  • Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, . Multiple immunoregulatory defects in type-1 diabetes. J Clin Invest. 2002;109:131–40.
  • Amelsfort J, Jacvobs K, Bijlsma J, Lafeber F, Taams L. CD4+ CD25+ regulatory T cells in rheumatoid arthritis: difference in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 2004;50:2775–85.
  • Cao D. Isolation and functional characterization of regulatory CD25brightCD4 T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol. 2003;33:215–23.
  • Crispin JC, Martinez A, Varela JA. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun. 2003;21:273–6.
  • Sakaguchi S, Sakaguchi N, Shimizu J. Immunological tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 2001;182:18–32.
  • Nanke Y, Kotake S, Goto M, Ujihara H, Matsubara M, Kamatani N. Decreased percentages of regulatory T cells in peripheral blood of patients with Behcet's disease before ocular attack: a possible predictive marker of ocular attack. Mod Rheumatol. 2008;18:354–8.
  • Kimura A, Naka T, Kishimoto T. IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells. Proc Natl Acad Sci USA. 2007; 104:12099–104.
  • Murray LJ, Lee R, Martens C. In vivo cytokine gene expression in T cell subsets of the autoimmune MRL/Mp-lpr/lpr mouse. Eur J Immunol. 1990;20:163–70.
  • Derynck R, Jarrett JA, Chen EY, Goeddel DV. The murine transforming growth factor-beta precursor. J Biol Chem. 1986;261:4377–9.
  • Hsu HC, Yang P, Wang J, Wu Q, Myers R, Chen J, . Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol. 2008;9:166–75.
  • Yamaguchi Y, Fujio K, Shoda H, Okamoto A, Tsuno NH, Takahashi K, . IL-17B and IL-17C are associated with TNF-alpha production and contribute to the exacerbation of inflammatory arthritis. J Immunol. 2007;179:7128–36.
  • Dieckmann D, Bruett CH, Ploettner H, Lutz MB, Schuler G. Human CD4+ CD25+ regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells. J Exp Med. 2002;196:247–53.
  • Papiernik M, do Carmo Leite-de-Moraes M, Pontoux C, Joret AM, Rocha B, Penit C, . T cell deletion induced by chronic infection with mouse mammary tumor virus spares a CD25-positive, IL-10-producing T cell population with infectious capacity. J Immunol. 1997;158:4642–53.
  • Stephens LA, Mottet C, Mason D, Powrie F. Human CD4(+)CD25(+) thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur J Immunol. 2001;31:1247–54.
  • Kulkarni AB, Karlsson S. Transforming growth factor-beta-1 knockout mice: a mutation in one cytokine gene causes a dramatic inflammatory disease. Am J Pathol. 1993;143:3–9.
  • Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, . Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359:693–9.
  • Sohn S, Lee ES, Kwon HJ, Lee SI, Bang D, Lee S. Expression of Th2 cytokines decreases the development of and improves Behçet's disease-like symptoms induced by herpes simplex virus in mice. J Infect Dis. 2001;183:1180–6.
  • Akdeniz N, Esrefoglu M, Keleş MS, Karakuzu A, Atasoy M. Serum interleukin-2, interleukin-6, tumour necrosis factor-alpha and nitric oxide levels in patients with Behcet's disease. Ann Acad Med Singapore. 2004;33:596–9.
  • Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR. TGF-beta induces a regulatory phenotype in CD4+ CD25− T cells through Foxp3 induction and down-regulation of Smad7. J Immunol. 2004;172:5149–53.
  • Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, . IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.
  • Matusevicius D, Kivisäkk P, He B, Kostulas N, Ozenci V, Fredrikson S, . Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler. 1999;5:101–4.
  • Wong CK, Ho CY, Li EK, Lam CW. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus. 2000;9:589–93.
  • Hashimoto T, Akiyama K, Kobayashi N, Mori A. Comparison of IL-17 production by helper T cells among atopic and nonatopic asthmatics and control subjects. Int Arch Allergy Immunol. 2005;137:51–4.
  • Lindén A, Hoshino H, Laan M. Airway neutrophils and interleukin-17. Eur Respir J. 2000;15:973–7.
  • Ricciardelli I, Lindley KJ, Londei M, Quaratino S. Anti tumour necrosis-alpha therapy increases the number of FOXP3 regulatory T cells in children affected by Crohn's disease. Immunology. 2008;125:178–83.
  • Huan J, Culbertson N, Spencer L, Bartholomew R, Burrows GG, Chou YK, . Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res. 2005;81:45–52.
  • Lee HY, Hong YK, Yun HJ, Kim YM, Kim JR, Yoo WH. Altered frequency and migration capacity of CD4+ CD25+ regulatory T cells in systemic lupus erythematosus. Rheumatology (Oxford). 2008;47:789–94.
  • Morgan ME, Flierman R, van Duivenvoorde LM, Witteveen HJ, van Ewijk W, van Laar JM, . Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+ regulatory T cells. Arthritis Rheu. 2005;52:2212–21.
  • Begum-Haque S, Sharma A, Kasper IR, Foureau DM, Mielcarz DW, Haque A, . Downregulation of IL-17 and IL-6 in the central nervous system by glatiramer acetate in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2008;204:58–65.
  • Han GM, O'Neil-Andersen NJ, Zurier RB, Lawrence DA. CD4+ CD25high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis. Cell Immunol. 2008;253:92–101.
  • Frimpong-Boateng K, van Rooijen N, Geiben-Lynn R. Regulatory T cells suppress natural killer cells during plasmid DNA vaccination in mice, blunting the CD8+ T cell immune response by the cytokine TGFbeta. PLoS One. 2010;5:e12281 (page 1–8).
  • Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, . Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol. 1999;163:4647–50.
  • Ahn JK, Chung H, Lee DS, Yu YS, Yu HG. CD8brightCD56+ T cells are cytotoxic effectors in patients with active Behcet's uveitis. J Immunol. 2005;175:6133–42.
  • Takeno M, Shimoyama Y, Kashiwakura J, Nagafuchi H, Sakane T, Suzuki N. Abnormal killer inhibitory receptor expression on natural killer cells in patients with Behçet's disease. Rheumatol Int. 2004; 24:212–6.
  • Lee M, Choi B, Kwon HJ, Shim J, Park KS, Lee ES, Sohn S. The role of Qa-2, the functional HLA-G, in a Behcet's disease-like mouse model induced by the herpes simplex virus. J Inflamm (Lond). 2010;7:31 (page 1–12).
  • Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. IL-2 is essential for TGF-beta to convert naive CD4+ CD25− cells to CD25+ Foxp3+ regulatory T cells and for expansion of these cells. J Immunol. 2007;178:2018–27.
  • Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage. Nat Immunol. 2007;8:457–62.
  • Baecher-Allan C, Hafler DA. Suppressor T cells in human diseases. J Exp Med. 2004;200:273–6.
  • McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+ CD25+ regulatory cells within the central nervous system. J Immunol. 2005;175:3025–32.
  • Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+ CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med. 2004;199:971–9.
  • Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M, . Immunologic self-tolerance maintained by CD25+ CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol. 1998;10:1969–80.
  • Zhang X, Koldzic DN, Izikson L, Reddy J, Nazareno RF, Sakaguchi S, . Interleukin-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+ CD4+ regulatory T cells. Int Immunol. 2004;16:249–56.
  • Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA. Natural and induced CD4+ CD25+ cells educate CD4+ CD25−cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol. 2004;72:5213–21.
  • Chai JG, Coe D, Chen D, Simpson E, Dyson J, Scott D. In vitro expansion improves in vivo regulation by CD4+ CD25+ regulatory T cells. J Immunol. 2008;180:858–69.
  • Mosmann TR, Coffman RL. Th1 and Th2 cell: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–73.
  • Bettelli E, Oukka M, Kuchroo VK. TH-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007;8:345–50.
  • Wan S, Xia C, Morel L. IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+ CD25+ T cell regulatory functions. J Immunol. 2007;178:271–9.
  • Yamakawa Y, Sugita Y, Nagatani T, Takahashi S, Yamakawa T, Tanaka S, . Interleukin-6 in patients with Behcet's disease. J Dermatol Sci. 1996;11:189–95.
  • Ichiyama K, Yoshida H, Wakabayashi Y, Chinen T, Saeki K, Nakaya M, . Foxp3 inhibits ROR{gamma}t-mediated IL-17A mRNA transcription through direct interaction with ROR{gamma}t. J Biol Chem. 2008;283:17003–8.
  • Shim J, Byun HO, Lee YD, Lee ES, Sohn S. Interleukin-6 small interfering RNA improved the herpes simplex virus-induced systemic inflammation in vivo mouse model. Gene Ther. 2009;16:415–25.
  • Choi B, Hwang Y, Kwon HJ, Lee ES, Park KS, Bang D, . Tumor necrosis factor alpha interfering RNA decreases herpes simplex virus-induced inflammation in a mouse model. J Dermatol Sci. 2008;52:87–97.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.