57
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Peptide-pulsed dendritic cell vaccination targeting interleukin-13 receptor α2 chain in recurrent malignant glioma patients with HLA-A*24/A*02 allele

, , , , , , , , , , & show all
Pages 733-742 | Received 18 Aug 2011, Accepted 31 Jan 2012, Published online: 16 Mar 2012

References

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, . The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.
  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, . Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.
  • Boon T, Coulie PG, Van den Eynde B. Tumor antigens recognized by T cells. Immunol Today. 1997;18:267–8.
  • Rosenberg SA. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity. 1999; 10:281–7.
  • Marchand M, van Baren N, Weynants P, Brichard V, Dreno B, Tessier MH, . Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer. 1999;80:219–30.
  • Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, . Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med. 1998; 4:321–7.
  • Kawaguchi S, Wada T, Ida K, Sato Y, Nagoya S, Tsukahara T, . Phase I vaccination trial of SYT-SSX junction peptide in patients with disseminated synovial sarcoma. J Transl Med. 2005;3:1.
  • Debinski W, Gibo DM, Hulet SW, Connor JR, Gillespie GY. Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin Cancer Res. 1999;5:985–90.
  • Debinski W, Gibo DM, Slagle B, Powers SK, Gillespie GY. Receptor for interleukin 13 is abundantly and specifically over-expressed in patients with glioblastoma multiforme. Int J Oncol. 1999;15:481–6.
  • Debinski W, Slagle B, Gibo DM, Powers SK, Gillespie GY. Expression of a restrictive receptor for interleukin 13 is associated with glial transformation. J Neurooncol. 2000; 48:103–11.
  • Wykosky J, Gibo DM, Stanton C, Debinski W. Interleukin-13 receptor alpha 2, EphA2, and Fos-related antigen 1 as molecular denominators of high-grade astrocytomas and specific targets for combinatorial therapy. Clin Cancer Res. 2008;14:199–208.
  • Debinski W, Gibo DM. Molecular expression analysis of restrictive receptor for interleukin 13, a brain tumor-associated cancer/testis antigen. Mol Med. 2000;6:440–9.
  • Mintz A, Gibo DM, Madhankumar AB, Debinski W. Molecular targeting with recombinant cytotoxins of interleukin-13 receptor alpha2-expressing glioma. J Neurooncol. 2003;64: 117–23.
  • Celis E, Sette A, Grey HM. Epitope selection and development of peptide based vaccines to treat cancer. Semin Cancer Biol. 1995;6:329–36.
  • Imanishi T, Akazawa T, Kimura A, Tokunaga K, Gojobori T. Allele and Haplotype Frequencies for HLA and Complement Loci in Various Ethnic Groups. New York: Oxford University Press; 1991.
  • Date Y, Kimura A, Kato H, Sasazuki T. DNA typing of the HLA-A gene: population study and identification of four new alleles in Japanese. Tissue Antigens. 1996;47:93–101.
  • Okano F, Storkus WJ, Chambers WH, Pollack IF, Okada H. Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor alpha2 chain. Clin Cancer Res. 2002;8:2851–5.
  • Shimato S, Natsume A, Wakabayashi T, Tsujimura K, Nakahara N, Ishii J, . Identification of a human leukocyte antigen-A24-restricted T-cell epitope derived from interleukin-13 receptor alpha2 chain, a glioma-associated antigen. J Neurosurg. 2008;109:117–22.
  • Yamanaka R, Yajima N, Abe T, Tsuchiya N, Homma J, Narita M, . Dendritic cell-based glioma immunotherapy. Int J Oncol. 2003;23:5–15.
  • Morse MA, Deng Y, Coleman D, Hull S, Kitrell-Fisher E, Nair S, . A phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res. 1999;5:1331–8.
  • Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, . Induction of CD8 + T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with alpha-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol. 2011;29:330–6.
  • Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, . Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res. 2005;11:5515–25.
  • Nishikawa H, Sato E, Briones G, Chen LM, Matsuo M, Nagata Y, . In vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines. J Clin Invest. 2006;116:1946–54.
  • Okugawa T, Ikuta Y, Takahashi Y, Obata H, Tanida K, Watanabe M, . A novel human HER2-derived peptide homologous to the mouse K(d)-restricted tumor rejection antigen can induce HLA-A24-restricted cytotoxic T lymphocytes in ovarian cancer patients and healthy individuals. Eur J Immunol. 2000;30:3338–46.
  • Holtl L, Rieser C, Papesh C, Ramoner R, Herold M, Klocker H, . Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J Urol. 1999;161:777–82.
  • Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, . Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998;4:328–32.
  • Heimberger AB, Crotty LE, Archer GE, McLendon RE, Friedman A, Dranoff G, . Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J Neuroimmunol. 2000;103: 16–25.
  • Liau LM, Black KL, Prins RM, Sykes SN, DiPatre PL, Cloughesy TF, . Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J Neurosurg. 1999;90:1115–24.
  • Okada H, Tahara H, Shurin MR, Attanucci J, Giezeman-Smits KM, Fellows WK, . Bone marrow-derived dendritic cells pulsed with a tumor-specific peptide elicit effective anti-tumor immunity against intracranial neoplasms. Int J Cancer. 1998;78:196–201.
  • Terasaki M, Shibui S, Narita Y, Fujimaki T, Aoki T, Kajiwara K, . Phase I trial of a personalized peptide vaccine for patients positive for human leukocyte antigen-A24 with recurrent or progressive glioblastoma multiforme. J Clin Oncol. 2011;29:337–44.
  • Okada H, Kohanbash G, Zhu X, Kastenhuber ER, Hoji A, Ueda R, . Immunotherapeutic approaches for glioma. Crit Rev Immunol. 2009;29:1–42.
  • Rodrigues JC, Gonzalez GC, Zhang L, Ibrahim G, Kelly JJ, Gustafson MP, . Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro Oncol. 2010;12:351–65.
  • Ogden AT, Horgan D, Waziri A, Anderson D, Louca J, McKhann GM, . Defective receptor expression and dendritic cell differentiation of monocytes in glioblastomas. Neurosurgery. 2006;59:902–9.
  • Diefenbach CS, Gnjatic S, Sabbatini P, Aghajanian C, Hensley ML, Spriggs DR, . Safety and immunogenicity study of NY-ESO-1b peptide and montanide ISA-51 vaccination of patients with epithelial ovarian cancer in high-risk first remission. Clin Cancer Res. 2008;14:2740–8.
  • Watchmaker PB, Berk E, Muthuswamy R, Mailliard RB, Urban JA, Kirkwood JM, . Independent regulation of chemokine responsiveness and cytolytic function versus CD8 + T cell expansion by dendritic cells. J Immunol. 2010; 184:591–7.
  • Mailliard RB, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML, . Alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res. 2004;64:5934–7.
  • Appay V, Jandus C, Voelter V, Reynard S, Coupland SE, Rimoldi D, . New generation vaccine induces effective melanoma-specific CD8 + T cells in the circulation but not in the tumor site. J Immunol. 2006;177:1670–8.
  • Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5:263–74.
  • Liau LM, Black KL, Martin NA, Sykes SN, Bronstein JM, Jouben-Steele L, . Treatment of a patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class I-matched tumor peptides. Case Report. Neurosurg Focus. 2000;9e8.
  • von Euw EM, Barrio MM, Furman D, Levy EM, Bianchini M, Peguillet I, . A phase I clinical study of vaccination of melanoma patients with dendritic cells loaded with allogeneic apoptotic/necrotic melanoma cells. Analysis of toxicity and immune response to the vaccine and of IL-10-1082 promoter genotype as predictor of disease progression. J Transl Med. 2008;6:6.
  • Bozinov O, Kalk JM, Krayenbuhl N, Woernle CM, Sure U, Bertalanffy H. Decreasing expression of the interleukin-13 receptor IL-13Ralpha2 in treated recurrent malignant gliomas. Neurol Med Chir (Tokyo). 2010;50:617–21.
  • Trepiakas R, Berntsen A, Hadrup SR, Bjorn J, Geertsen PF, Straten PT, . Vaccination with autologous dendritic cells pulsed with multiple tumor antigens for treatment of patients with malignant melanoma: results from a phase I/II trial. Cytotherapy. 2010;12:721–34.
  • Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9:453–61.
  • Kang HC, Kim CY, Han JH, Choe GY, Kim JH, Kim JH, and Kim IA. Pseudoprogression in patients with malignant gliomas treated with concurrent temozolomide and radiotherapy: potential role of p53. J Neurooncol. 2011;102:157–62.
  • Taal W, Brandsma D, de Bruin HG, Bromberg JE, Swaak-Kragten AT, Smitt PA, . Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer. 2008; 113:405–10.
  • Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, . MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26:2192–7.
  • Topkan E, Topuk S, Oymak E, Parlak C, Pehlivan B. Pseudoprogression in patients with glioblastoma multiforme after concurrent radiotherapy and temozolomide. Am J Clin Oncol. 2011;Mar 10 [Epub ahead of print].
  • Chamberlain MC, Glantz MJ, Chalmers L, Van Horn A, Sloan AE. Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol. 2007;82:81–3.
  • Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, . Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res. 2011;17:1603–15.
  • Ridolfi L, Petrini M, Fiammenghi L, Granato AM, Ancarani V, Pancisi E, . Unexpected high response rate to traditional therapy after dendritic cell-based vaccine in advanced melanoma: update of clinical outcome and subgroup analysis. Clin Dev Immunol. 2010;2010:504979.
  • Ardon H, Van Gool S, Lopes IS, Maes W, Sciot R, Wilms G, . Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol. 2010;99:261–72.
  • Ribas A, Comin-Anduix B, Chmielowski B, Jalil J, de la Rocha P, McCannel TA, . Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma. Clin Cancer Res. 2009;15:6267–76.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.