1,598
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and biological evaluation of 2,5-disubstituted 1,3,4-oxadiazole derivatives with both COX and LOX inhibitory activity

, , , , &
Pages 767-776 | Received 13 Oct 2010, Accepted 22 Dec 2010, Published online: 11 Feb 2011

References

  • Fiorucci S, Meli R, Bucci M, Cirino G. Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy? Biochem Pharmacol 2001;62:1433–1438.
  • Smith WL, Marnett LJ. Prostaglandin endoperoxide synthase: structure and catalysis. Biochim Biophys Acta 1991;1083:1–17.
  • Dannhardt G, Kiefer W. Cyclooxygenase inhibitors—current status and future prospects. Eur J Med Chem 2001;36:109–126.
  • Fosslien E. Adverse effects of nonsteroidal anti-inflammatory drugs on the gastrointestinal system. Ann Clin Lab Sci 1998;28:67–81.
  • Goldenberg MM. Celecoxib, a selective cyclooxygenase-2 inhibitor for the treatment of rheumatoid arthritis and osteoarthritis. Clin Ther 1999;21:1497–1513; discussion 1427.
  • Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 1998;38:97–120.
  • Mukherjee D. Selective cyclooxygenase-2 (COX-2) inhibitors and potential risk of cardiovascular events. Biochem Pharmacol 2002;63:817–821.
  • Parente L, Perretti M. Advances in the pathophysiology of constitutive and inducible cyclooxygenases: two enzymes in the spotlight. Biochem Pharmacol 2003;65:153–159.
  • Samuelsson B, Borgeat P, Hammaratrom S, Murphy RC. Leukotrienes: a new group of biologically active compounds. Adv Prostaglandin Thromboxane Res 1980;6:1–18.
  • Samuelsson B. Leukotrienes and other lipoxygenase products. Prog Lipid Res 1986;25:13–18.
  • Charlier C, Michaux C. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur J Med Chem 2003;38:645–659.
  • McMillan RM, Walker ERH. Designing therapeutically effective 5-lipoxygenase inhibitors. Trends Pharmacol Sci 1992;13:323–327.
  • Ford-Hutchinson AW, Gresser M, Young RN. 5-Lipoxygenase. Annu Rev Biochem 1994;63:383–386.
  • Young RN. Inhibitors of 5-lipoxygenase: a therapeutic potential yet to be fully realized? Eur J Med Chem 1999;34:671–685.
  • Vila L. Cyclooxygenase and 5-lipoxygenase pathways in the vessel wall: role in atherosclerosis. Med Res Rev 2004;24:399–424.
  • Zhao L, Funk CD. Lipoxygenase pathways in atherogenesis. Trends Cardiovasc Med 2004;14:191–195.
  • Kayama Y, Minamino T, Toko H, Sakamoto M, Shimizu I, Takahashi H et al. Cardiac 12/15 lipoxygenase-induced inflammation is involved in heart failure. J Exp Med 2009;206:1565–1574.
  • Rotondo S, Dell’Elba G, Krauze-Brzósko K, Manarini S, Martelli N, Pecce R et al. Licofelone, a dual lipoxygenase–cyclooxygenase inhibitor, downregulates polymorphonuclear leukocyte and platelet function. Eur J Pharmacol 2002;453:131–139.
  • Pommery N, Taverne T, Telliez A, Goossens L, Charlier C, Pommery J et al. New COX-2/5-LOX inhibitors: apoptosis-inducing agents potentially useful in prostate cancer chemotherapy. J Med Chem 2004;47:6195–6206.
  • Vijayakrishnan R, Rao GS. A computer modeling approach towards designing dual LOX/COX inhibitors as potent anti-cancer drugs. Biophys J 2009;94:1090.
  • Holla BS, Gonsalves R, Shenoy S. Synthesis and antibacterial studies of a new series of 1,2-bis(1,3, 4-oxadiazol-2-yl)ethanes and 1,2-bis(4-amino-1,2, 4-triazol-3-yl)ethanes. Eur J Med Chem 2000;35:267–271.
  • Macaev F, Rusu G, Pogrebnoi S, Gudima A, Stingaci E, Vlad L et al. Synthesis of novel 5-aryl-2-thio-1,3,4-oxadiazoles and the study of their structure–anti-mycobacterial activities. Bioorg Med Chem 2005;13:4842–4850.
  • Liu F, Luo XQ, Song BA, Bhadury PS, Yang S, Jin LH et al. Synthesis and antifungal activity of novel sulfoxide derivatives containing trimethoxyphenyl substituted 1,3,4-thiadiazole and 1,3,4-oxadiazole moiety. Bioorg Med Chem 2008;16:3632–3640.
  • Burbuliene MM, Jakubkiene V, Mekuskiene G, Udrenaite E, Smicius R, Vainilavicius P. Synthesis and anti-inflammatory activity of derivatives of 5-[(2-disubstituted amino-6-methyl-pyrimidin-4-yl)-sulfanylmethyl]-3H-1,3,4-oxadiazole-2-thiones. Farmaco 2004;59:767–774.
  • Palaska E, Sahin G, Kelicen P, Durlu NT, Altinok G. Synthesis and anti-inflammatory activity of 1-acylthiosemicarbazides, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones. Farmaco 2002;57:101–107.
  • Amir M, Shikha K. Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino) phenyl]acetic acid derivatives. Eur J Med Chem 2004;39:535–545.
  • Zarghi A, Tabatabai SA, Faizi M, Ahadian A, Navabi P, Zanganeh V et al. Synthesis and anticonvulsant activity of new 2-substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazoles. Bioorg Med Chem Lett 2005;15:1863–1865.
  • Liu KG, Smith JS, Ayscue AH, Henke BR, Lambert MH, Leesnitzer LM et al. Identification of a series of oxadiazole-substituted alpha-isopropoxy phenylpropanoic acids with activity on PPARalpha, PPARgamma, and PPARdelta. Bioorg Med Chem Lett 2001;11:2385–2388.
  • Kumar D, Sundaree S, Johnson EO, Shah K. An efficient synthesis and biological study of novel indolyl-1,3,4-oxadiazoles as potent anticancer agents. Bioorg Med Chem Lett 2009;19:4492–4494.
  • Emam AA, Deeb OA, Al-Omar M, Lehmann J. Synthesis, antimicrobial, and anti-HIV-1 activity of certain 5-(1-adamantyl)-2-substituted thio-1,3,4-oxadiazoles and 5-(1-adamantyl)-3-substituted aminomethyl-1,3,4-oxadiazoline-2-thiones. J Bioorg Med Chem 2004;12:5107–5113.
  • Khan MT, Choudhary MI, Khan KM, Rani M, Atta-ur-Rahman. Structure–activity relationships of tyrosinase inhibitory combinatorial library of 2,5-disubstituted-1,3,4-oxadiazole analogues. Bioorg Med Chem 2005;13:3385–3395.
  • Farooqui M, Bora R, Patil CR. Synthesis, analgesic and anti-inflammatory activities of novel 3-(4-acetamido-benzyl)-5-substituted-1,2,4-oxadiazoles. Eur J Med Chem 2009;44:794–799.
  • Srivastava RM, de Almeida Lima A, Viana OS, da Costa Silva MJ, Catanho MT, de Morais JO. Antiinflammatory property of 3-aryl-5-(n-propyl)-1,2,4-oxadiazoles and antimicrobial property of 3-aryl-5-(n-propyl)-4,5-dihydro-1,2,4-oxadiazoles: their syntheses and spectroscopic studies. Bioorg Med Chem 2003;11:1821–1827.
  • Velázquez C, Rao PN, McDonald R, Knaus EE. Synthesis and biological evaluation of 3,4-diphenyl-1,2,5-oxadiazole-2-oxides and 3,4-diphenyl-1,2,5-oxadiazoles as potential hybrid COX-2 inhibitor/nitric oxide donor agents. Bioorg Med Chem 2005;13:2749–2757.
  • Grimm EL, Brideau C, Chauret N, Chan CC, Delorme D, Ducharme Y et al. Substituted coumarins as potent 5-lipoxygenase inhibitors. Bioorg Med Chem Lett 2006;16:2528–2531.
  • Alka K, Vasant KA, Rao MNA. Anti-inflammatory activity of cinnamic acids. Pharmazie 1989;44:870–873.
  • Maddi V, Raghu KS, Rao MN. Synthesis and anti-inflammatory activity of 3-(benzylideneamino)coumarins in rodents. J Pharm Sci 1992;81:964–966.
  • Kimura Y, Okuda H, Arichi S, Baba K, Kozawa M. Inhibition of the formation of 5-hydroxy-6,8,11,14-eicosatetraenoic acid from arachidonic acid in polymorphonuclear leukocytes by various coumarins. Biochim Biophys Acta 1985;834:224–229.
  • Celotti F, Laufer S. Anti-inflammatory drugs: new multitarget compounds to face an old problem. The dual inhibition concept. Pharmacol Res 2001;43:429–436.
  • Akhter M, Husain A, Azad B, Ajmal M. Aroylpropionic acid based 2,5-disubstituted-1,3,4-oxadiazoles: synthesis and their anti-inflammatory and analgesic activities. Eur J Med Chem 2009;44:2372–2378.
  • Khan MSY, Akhter M. Synthesis of some new 2,5-disubstituted 1,3,4-oxadiazole derivatives and their biological activity. Indian J Chem 2003;42B:900–904.
  • Horning EC, Horning MG, Dimming DA. Organic Synthesis, Collective Vol. 3. New York: John Wiley & Sons Inc.; 1995, pp. 165–167.
  • Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR. Miscellaneous aromatic nitrogen compound. Vogel’s Textbook of Practical Organic Chemistry. England: Addison Wesley Longman Limited; 1998, pp. 966.
  • Yar MS, Siddiqui AA, Ali MA. Synthesis and anti tuberculostatic activity of novel 1,3,4-oxadiazole derivatives. J Chin Chem Soc 2007;54:5–8.
  • Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 1962;111:544–547.
  • Fukawa K, Kawano O, Hibi M, Misaki N, Ohba S, Hatanaka Y. A method for evaluating analgesic agents in rats. J Pharmacol Methods 1980;4:251–259.
  • Cioli V, Putzolu S, Rossi V, Scorza Barcellona P, Corradino C. The role of direct tissue contact in the production of gastrointestinal ulcers by anti-inflammatory drugs in rats. Toxicol Appl Pharmacol 1979;50:283–289.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351–358.
  • Carter GW, Young PR, Albert DH, Bouska J, Dyer R, Bell RL et al. 5-Lipoxygenase inhibitory activity of zileuton. J Pharmacol Exp Ther 1991;256:929–937.
  • Romano M, Chen XS, Takahashi Y, Yamamoto S, Funk CD, Serhan CN. Lipoxin synthase activity of human platelet 12-lipoxygenase. Biochem J 1993;296 (Pt 1):127–133.
  • Auerbach BJ, Kiely JS, Cornicelli JA. A spectrophotometric microtiter-based assay for the detection of hydroperoxy derivatives of linoleic acid. Anal Biochem 1992;201:375–380.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.