1,001
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Inhibition of poly(ADP-ribose) polymerase-1 attenuates the toxicity of carbon tetrachloride

, , , , &
Pages 883-889 | Published online: 14 Mar 2011

References

  • Nakae D, Umemura T, Kurokawa Y. Reactive oxygen and nitrogen oxide species-induced stress, a major intrinsic factor involved in Carcinogenic Processes and a Possible Target for Cancer Prevention. Asian Pac J Cancer Prev 2002;3:313–318.
  • Liaudet L. Poly(adenosine 5′-diphosphate) ribose polymerase activation as a cause of metabolic dysfunction in critical illness. Curr Opin Clin Nutr Metab Care 2002;5:175–184.
  • Ueda K, Hayaishi O. ADP-ribosylation. Annu Rev Biochem 1985;54:73–100.
  • Alvarez-Gonzalez R, Watkins TA, Gill PK, Reed JL, Mendoza-Alvarez H. Regulatory mechanisms of poly(ADP-ribose) polymerase. Mol Cell Biochem 1999;193:19–22.
  • Berger NA. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res 1985;101:4–15.
  • Carson DA, Seto S, Wasson DB, Carrera CJ. DNA strand breaks, NAD metabolism, and programmed cell death. Exp Cell Res 1986;164:273–281.
  • Gaal JC, Smith KR, Pearson CK. Cellular euthanasia mediated by a nuclear enzyme: a central role for nuclear ADP-ribosylation in cellular metabolism. Trends Biochem Sci 1987;12:129–130.
  • Du L, Zhang X, Han YY, Burke NA, Kochanek PM, Watkins SC et al. Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. J Biol Chem 2003;278:18426–18433.
  • Herceg Z, Wang Z-Q. Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Mol Cell Biol 1999;19:5124–5133.
  • Ha HC, Snyder SH. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 1999;96:13978–13982.
  • Szabó C, Dawson VL. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 1998;19:287–298.
  • Pieper AA, Verma A, Zhang J, Snyder SH. Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci 1999;20:171–181.
  • Strosznajder RP, Gadamski R, Czapski GA, Jesko H, Strosznajder JB. Poly(ADP-ribose) polymerase during reperfusion after transient forebrain ischemia: its role in brain edema and cell death. J Mol Neurosci 2003;20:61–72.
  • Strosznajder RP, Jesko H, Zambrzycka A. Poly(ADP-ribose) polymerase: the nuclear target in signal transduction and its role in brain ischemia-reperfusion injury. Mol Neurobiol 2005;31:149–167.
  • Strosznajder R, Gadamski R, Walski M. Inhibition of poly(ADP-ribose) polymerase activity protects hippocampal cells against morphological and ultrastructural alteration evoked by ischemia-reperfusion injury. Folia Neuropathol 2005;43:156–165.
  • Ha HC, Snyder SH. Poly(ADP-ribose) polymerase-1 in the nervous system. Neurobiol Dis 2000;7:225–239.
  • Virág L, Szabó C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 2002;54:375–429.
  • Koh DW, Dawson TM, Dawson VL. Mediation of cell death by poly(ADP-ribose) polymerase-1. Pharmacol Res 2005;52:5–14.
  • Erdélyi K, Bakondi E, Gergely P, Szabó C, Virág L. Pathophysiologic role of oxidative stress-induced poly(ADP-ribose) polymerase-1 activation: focus on cell death and transcriptional regulation. Cell Mol Life Sci 2005;62:751–759.
  • Moroni F, Meli E, Peruginelli F, Chiarugi A, Cozzi A, Picca R et al. Poly(ADP-ribose) polymerase inhibitors attenuate necrotic but not apoptotic neuronal death in experimental models of cerebral ischemia. Cell Death Differ 2001;8:921–932.
  • Meli E, Pangallo M, Picca R, Baronti R, Moroni F, Pellegrini-Giampietro DE. Differential role of poly(ADP-ribose) polymerase-1in apoptotic and necrotic neuronal death induced by mild or intense NMDA exposure in vitro. Mol Cell Neurosci 2004;25:172–180.
  • Palomba L, Sestili P, Cattabeni F, Azzi A, Cantoni O. Prevention of necrosis and activation of apoptosis in oxidatively injured human myeloid leukemia U937 cells. FEBS Lett 1996;390:91–94.
  • Virág L, Scott GS, Cuzzocrea S, Marmer D, Salzman AL, Szabó C. Peroxynitrite-induced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase (PARS) activation. Immunology 1998;94:345–355.
  • Walisser JA, Thies RL. Poly(ADP-ribose) polymerase inhibition in oxidant-stressed endothelial cells prevents oncosis and permits caspase activation and apoptosis. Exp Cell Res 1999;251:401–413.
  • Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 1993;53:3976–3985.
  • Eguchi Y, Shimizu S, Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 1997;57:1835–1840.
  • Leist M, Single B, Castoldi AF, Kühnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 1997;185:1481–1486.
  • Prabhakaran K, Li L, Borowitz JL, Isom GE. Caspase inhibition switches the mode of cell death induced by cyanide by enhancing reactive oxygen species generation and PARP-1 activation. Toxicol Appl Pharmacol 2004;195:194–202.
  • Cole K, Perez-Polo JR. Neuronal trauma model: in search of Thanatos. Int J Dev Neurosci 2004;22:485–496.
  • Lee Y-j, Shacter E. Oxidative stress inhibits apoptosis in human lymphoma cells. J Biol Chem 1999;274:19792–19798.
  • Cole KK, Perez-Polo JR. Poly(ADP-ribose) polymerase inhibition prevents both apoptotic-like delayed neuronal death and necrosis after H2O2 injury. J Neurochem 2002;82:19–29.
  • Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 2002;297:259–263.
  • Strosznajder R, Gajkowska B. Effect of 3-aminobenzamide on Bcl-2, Bax and AIF localization in hippocampal neurons altered by ischemia-reperfusion injury. The immunocytochemical study. Acta Neurobiol Exp (Wars) 2006;66:15–22.
  • Cipriani G, Rapizzi E, Vannacci A, Rizzuto R, Moroni F, Chiarugi A. Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction. J Biol Chem 2005;280:17227–17234.
  • Tanaka S, Takehashi M, Iida S, Kitajima T, Kamanaka Y, Stedeford T et al. Mitochondrial impairment induced by poly(ADP-ribose) polymerase-1 activation in cortical neurons after oxygen and glucose deprivation. J Neurochem 2005;95:179–190.
  • Cosi C. New inhibitors of poly(ADP-ribose) polymerase and their potential therapeutic targets. Expert Opin Ther Pathol 2002;12:1047–1071.
  • Moore L, Rodman Davenport G, Landon EJ. Calcium uptake of a rat liver microsomal subcellular fraction in response to in vivo administration of carbon tetrachloride. J Biol Chem 1976;251:1197–1201.
  • Weber LWD, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol 2003;33:105–136.
  • Gibb JW, Brody TM. The protective effect of nicotinamide on carbon tetrachloride-induced hepatotoxicity. Biochem Pharmacol 1967;16:2047–2049.
  • de Ferreyra EC, Bernacchi AS, San Martín MF, Castro GD, Castro JA. Nicotinamide late protective effects against carbon tetrachloride-induced liver necrosis. Exp Mol Pathol 1994;60:214–223.
  • Lind RC, Gandolfi AJ. Late dimethyl sulfoxide administration provides a protective action against chemically induced injury in both the liver and the kidney. Toxicol Appl Pharmacol 1997;142:201–207.
  • Lind RC, Gandolfi AJ. Hepatoprotection by dimethyl sulfoxide. I. Protection when given twenty-four hours after chloroform or bromobenzene. Toxicol Pathol 1999;27:342–347.
  • Su P-H, Takehashi M, Tanaka S, Banasik M, Stedeford T, Ueda K et al. Hepatocellular accumulation of poly(ADP-ribose) in male ICR mice treated with a necrogenic dose of carbon tetrachloride. Res Commun Mol Pathol Pharmacol 2003;113-114:171–179.
  • Banasik M, Komura H, Shimoyama M, Ueda K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J Biol Chem 1992;267:1569–1575.
  • Banasik M, Stedeford T, Ueda K, Muro-Cacho C, Su P-H, Tanaka S et al. Hepatoprotective effects of 6(5H)-phenanthridinone from chemical-induced centrilobular necrosis. Res Commun Mol Pathol Pharmacol 2004;115-116:15–20.
  • Hoff J. Methods of blood collection in the mouse. Lab Anim 2000;29:47–53.
  • Ikai K, Ueda K, Hayaishi O. Immunohistochemical demonstration of poly(adenosine diphosphate-ribose) in nuclei of various rat tissues. J Histochem Cytochem 1980;28:670–676.
  • Bolin C, Stedeford T, Cardozo-Pelaez F. Single extraction protocol for the analysis of 8-hydroxy-2′-deoxyguanosine (oxo8dG) and the associated activity of 8-oxoguanine DNA glycosylase. J Neurosci Methods 2004;136:69–76.
  • Recknagel RO, Glende EA Jr, Dolak JA, Waller RL. Mechanisms of carbon tetrachloride toxicity. Pharmacol Ther 1989;43:139–154.
  • Banasik M, Stedeford T, Strosznajder RP, Persad AS, Tanaka S, Ueda K. The effects of organic solvents on poly(ADP-ribose) polymerase-1 activity: implications for neurotoxicity. Acta Neurobiol Exp (Wars) 2004;64:467–473.
  • Recknagel RO. Carbon tetrachloride hepatotoxicity. Pharmacol Rev 1967;19:145–208.
  • Mancini RE, Kocsis JJ. Dimethylsulfoxide increases the lethality of CCl4 in rats but decreases its hepatotoxicity. Toxicol Appl Pharmacol 1974;27:206–209.
  • Easterbrook J, Lu C, Sakai Y, Li AP. Effects of organic solvents on the activities of cytochrome P450 isoforms, UDP-dependent glucuronyl transferase, and phenol sulfotransferase in human hepatocytes. Drug Metab Dispos 2001;29:141–144.
  • Gemma S, Vittozzi L, Testai E. Metabolism of chloroform in the human liver and identification of the competent P450s. Drug Metab Dispos 2003;31:266–274.
  • Lauriault VV, Khan S, O’Brien PJ. Hepatocyte cytotoxicity induced by various hepatotoxins mediated by cytochrome P-450IIE1: protection with diethyldithiocarbamate administration. Chem Biol Interact 1992;81:271–289.
  • Lind RC, Gandolfi AJ. Hepatoprotection by dimethyl sulfoxide. II. Characterization of optimal dose and the latest time of administration for effective protection against chloroform and bromobenzene induced injury. Exp Toxicol Pathol 1999;51:537–543.
  • Dutcher JS, Mitchell CE. Distribution and elimination of inhaled phenanthridone in Fischer-344 rats. J Toxicol Environ Health 1983;12:709–719.
  • Mitchell CE. Effect of aryl hydrocarbon hydroxylase induction on the in vivo covalent binding of 1-nitropyrene, benzo[a]pyrene, 2-aminoanthracene, and phenanthridone to mouse lung deoxyribonucleic acid. Biochem Pharmacol 1985;34:545–551.
  • Cover C, Fickert P, Knight TR, Fuchsbichler A, Farhood A, Trauner M et al. Pathophysiological role of poly(ADP-ribose) polymerase (PARP) activation during acetaminophen-induced liver cell necrosis in mice. Toxicol Sci 2005;84:201–208.
  • Wan J, Bae M-A, Song B-J. Acetoaminophen-induced accumulation of 8-oxodeoxyguanosine through reduction of Ogg1 DNA repair enzyme in C6 glioma cells. Exp Mol Med 2004;36:71–77.
  • Ogawa K, Masutani M, Kato K, Tang M, Kamada N, Suzuki H et al. Parp-1 deficiency does not enhance liver carcinogenesis induced by 2-amino-3-methylimidazo[4,5-f]quinoline in mice. Cancer Lett 2006;236:32–38.
  • Banasik M, Stedeford T, Strosznajder RP, Hsu C-H, Tanaka S, Ueda K. Differential effects of heterocyclic amines on poly(ADP-ribose) polymerase-1 and mono-ADP-ribosyltransferase A. J Physiol Pharmacol 2006;57 Suppl 4:15–22.