1,065
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Biotransformation of dehydroepiandrosterone with Macrophomina phaseolina and β-glucuronidase inhibitory activity of transformed products

, , , , , , & show all
Pages 348-355 | Received 07 Mar 2011, Accepted 19 May 2011, Published online: 21 Jul 2011

References

  • Lacroix I, Biton J, Azerad R. Microbial models of drug metabolism: microbial transformations of Trimegestone (RU27987), a 3-keto-delta(4,9(10))-19-norsteroid drug. Bioorg Med Chem 1999;7:2329–2341.
  • Zaks A, Dodds DR. Application of biocatalysis and biotransformations to the synthesis of pharmaceuticals. Drug Discov Today 1997;2:513–531.
  • Dubey KK, Ray AR, Behera BK. Production of demethylated colchicine through microbial transformation and scale-up process development. Process Biochem 2008;43:251–257.
  • Fotherby K. The isolation of 3 beta-hydroxy-delta 5-steroids from the urine of normal men. Biochem J 1958;69:596–600.
  • Daynes RA, Dudley DJ, Araneo BA. Regulation of murine lymphokine production in vivo. II. Dehydroepiandrosterone is a natural enhancer of interleukin 2 synthesis by helper T cells. Eur J Immunol 1990;20:793–802.
  • Danenberg HD, Alpert G, Lustig S, Ben-Nathan D. Dehydroepiandrosterone protects mice from endotoxin toxicity and reduces tumor necrosis factor production. Antimicrob Agents Chemother 1992;36:2275–2279.
  • Danenberg HD, Ben-Yehuda A, Zakay-Rones Z, Friedman G. Dehydroepiandrosterone (DHEA) treatment reverses the impaired immune response of old mice to influenza vaccination and protects from influenza infection. Vaccine 1995;13:1445–1448.
  • Solerte SB, Fioravanti M, Vignati G, Giustina A, Cravello L, Ferrari E. Dehydroepiandrosterone sulfate enhances natural killer cell cytotoxicity in humans via locally generated immunoreactive insulin-like growth factor I. J Clin Endocrinol Metab 1999;84:3260–3267.
  • Compagnone NA, Mellon SH. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 2000;21:1–56.
  • Choudhary MI, Shah SA, Musharraf SG, Shaheen F, Atta-Ur-Rahman. Microbial transformation of dehydroepiandrosterone. Nat Prod Res 2003;17:215–220.
  • Madyastha KM, Joseph T. Transformation of dehydroepiandrosterone and pregnenolone by Mucor piriformis. Appl Microbiol Biotechnol 1995;44:339–343.
  • Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral, JMS. Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 2003;32:688–705.
  • Romano A, Romano D, Ragg E, Costantino F, Lenna R, Gandolfi R et al. Steroid hydroxylations with Botryodiplodia malorum and Colletotrichum lini. Steroids 2006;71:429–434.
  • Kolek T. Biotransformation XLVII: transformations of 5-ene steroids in Fusarium culmorum culture. J Steroid Biochem Mol Biol 1999;71:83–90.
  • Hong-Min L, Heping L, Lihong S, Jian W. Synthesis of steroidal lactone by Penicillium citeo-viride. Steroids 2006;71:931–934.
  • Lamm AS, Chen AR, Reynolds WF, Reese PB. Steroid hydroxylation by Whetzelinia sclerotiorum, Phanerochaete chrysosporium and Mucor plumbeus. Steroids 2007;72:713–722.
  • Hunter AC, Mills PW, Dedi C, Dodd HT. Predominant allylic hydroxylation at carbons 6 and 7 of 4 and 5-ene functionalized steroids by the thermophilic fungus Rhizomucor tauricus IMI23312. J Steroid Biochem Mol Biol 2008;108:155–163.
  • Janeczko T, Dmochowska-Gladysz J, Kostrzewa-Suslow E, Bialonska A, Ciunik Z. Biotransformations of steroid compounds by Chaetomium sp. KCH 6651. Steroids 2009;74:657–661.
  • Hunter AC, Coyle E, Morse F, Dedi C, Dodd HT, Koussoroplis S. Transformation of 5-ene steroids by the fungus Aspergillus tamarii KITA: Mixed molecular fate in lactonization and hydroxylation pathways with identification of a putative 3β-hydroxy-steroid dehydrogenase/Δ5–Δ4 isomerase pathway. Biochim et Biophys Acta 2009;1719:110–117.
  • Lobastova TG, Donova MV. The microbial formation of lactones from dehydroepiandrosterone. Special abstracts/J Biotechnol 2010;1505:51–5576.
  • Huang LH, Li J, Xu G, Zhang XH, Wang YG, Yin YL et al. Biotransformation of dehydroepiandrosterone (DHEA) with Penicillium griseopurpureum Smith and Penicillium glabrum (Wehmer) Westling. Steroids 2010;75:1039–1046.
  • Liu Y, Cheng KD, Zhu P, Feng WH, Meng C, Zhu HX et al. [Biotransformation of dehydroepiandrosterone by hairy root cultures of Anisodus tanguticus]. Yao Xue Xue Bao 2004;39:445–448.
  • Weill-Engerer S, David JP, Sazdovitch V, Liere P, Schumacher M, Delacourte A et al. In vitro metabolism of dehydroepiandrosterone (DHEA) to 7alpha-hydroxy-DHEA and Delta5-androstene-3beta,17beta-diol in specific regions of the aging brain from Alzheimer’s and non-demented patients. Brain Res 2003;969:117–125.
  • Chalbot S, Morfin R. Human liver S9 fractions: metabolism of dehydroepiandrosterone, epiandrosterone, and related 7-hydroxylated derivatives. Drug Metab Dispos 2005;33:563–569.
  • Marwah A, Marwah P, Lardy H. Ergosteroids. VI. Metabolism of dehydroepiandrosterone by rat liver in vitro: a liquid chromatographic-mass spectrometric study. J Chromatogr B Analyt Technol Biomed Life Sci 2002;767:285–299.
  • Jellinck PH, Lee SJ, McEwen BS. Metabolism of dehydroepiandrosterone by rat hippocampal cells in culture: possible role of aromatization and 7-hydroxylation in neuroprotection. J Steroid Biochem Mol Biol 2001;78:313–317.
  • Jellinck PH, Croft G, McEwen BS, Blackmore AG, Jones G, Byford V, Bulloch K. Metabolism of dehydroepiandrosterone by rat hippocampal cells in culture: possible role of aromatization and 7-hydroxylation in neuroprotection. J Steroid Biochem Mol Biol 2005;93:81–86.
  • Lavallée B, Provost PR, Kahwash Z, Nestler JE, Bélanger A. Effect of insulin on serum levels of dehydroepiandrosterone metabolites in men. Clin Endocrinol (Oxf) 1997;46:93–100.
  • Kavak DD, Altiok E, Bayraktar O, Ulku S. Pistacia terebinthus extract: As a potential antioxidant, antimicrobial and possible β-glucuronidase inhibitor. J Mol Catal B: Enzym 2010;64:167–171.
  • Rauh R, Diakov A, Tzschoppe A, Korbmacher J, Azad AK, Cuppens H et al. A mutation of the epithelial sodium channel associated with atypical cystic fibrosis increases channel open probability and reduces Na+ self inhibition. J Physiol (Lond) 2010;588:1211–1225.
  • Stehlik C. Multiple interleukin-1beta-converting enzymes contribute to inflammatory arthritis. Arthritis Rheum 2009;60:3524–3530.
  • Lam SK, Ng TB. A dimeric high-molecular-weight chymotrypsin inhibitor with antitumor and HIV-1 reverse transcriptase inhibitory activities from seeds of Acacia confusa. Phytomedicine 2010;17:621–625.
  • Choudhary MI, Musharraf SG, Ali RA, Atif M, Atta-ur-Rahman. Microbial transformation of antifertility agents, norethisterone and 17α-ethynylestradiol. Z Naturforsch 2004;59b:319–323.
  • Choudhary MI, Sultan S, Khan MT, Rahman AU. Microbial transformation of 17alpha-ethynyl- and 17alpha-ethylsteroids, and tyrosinase inhibitory activity of transformed products. Steroids 2005;70:798–802.
  • Choudhary MI, Khan NT, Musharraf SG, Anjum S, Atta-Ur-Rahman. Biotransformation of adrenosterone by filamentous fungus, Cunninghamella elegans. Steroids 2007;72:923–929.
  • Choudhary MI, Mohammad MY, Musharraf SG, Parvez M, Al-Aboudi A, Atta-ur-Rahman. New oxandrolone derivatives by biotransformation using Rhizopus stolonifer. Steroids 2009;74:1040–1044.
  • Nunes RMD, Peixoto AF, Axet MR, Pereira MM, Moreno MJ, Kollár L, Claver C, Castillón S. J Mol Catal A: Chemical 2006;247:275–282.
  • Hu S, Genain G, Azerad R. Microbial transformation of steroids: contribution to 14 alpha-hydroxylations. Steroids 1995;60:337–352.
  • LI, H, Peng YU, Zhang H, Hong-Min LIU. Synthesis of 5-androstene-3β,7α,17β-triol and 5-androstene-3β,7β,17β-triol. Chin J Chem 2008;26:1666–1668.
  • Labler L; Slama K; Sorm, F. Steroids. CXV. Toxic effects of some androstane derivatives on Pyrrhocoris apterus larvae. Collect Czech Chem Comm 1968;33:2226–2237.
  • Khan KM, Shujaat S, Rahat S, Hayat S, Atta-ur-Rahman, Choudhary MI. Beta-N-cyanoethyl acyl hydrazide derivatives: a new class of beta-glucuronidase inhibitors. Chem Pharm Bull 2002;50:1443–1446.
  • Jozef V, Gordon GG, Louis SA. Metabolism of 7α -3H-testosterone by human mandibular bone in vitro. Med Sci Res 1990;18:67–68.
  • Kaartinen E, Laukkanen M, Saure A. Metabolism of dehydroepiandrosterone by rat testicular homogenates; kinetic study at different temperatures; direct effect of 17 beta-oestradiol. Acta Endocrinol 1971;66:50–64.
  • Eunjeong K., Eunsook M. Chemoselective reduction of 1,4,6-cholestatrien-3-one and 1,4,6-androstatriene-3,17-dione by various hydride reagents. Steroids 2007;72:360–367.
  • Choudhary MI, Shah SA, Atta-ur-Rahman, Khan SN, Khan MT. Alpha-glucosidase and tyrosinase inhibitors from fungal hydroxylation of tibolone and hydroxytibolones. Steroids 2010;75:956–966.
  • Birkenmeier EH, Davisson MT, Beamer WG, Ganschow RE, Vogler CA, Gwynn B et al. Murine mucopolysaccharidosis type VII. Characterization of a mouse with beta-glucuronidase deficiency. J Clin Invest 1989;83:1258–1266.
  • Sly WS, Quinton BA, McAlister WH, Rimoin DL. Beta glucuronidase deficiency: report of clinical, radiologic, and biochemical features of a new mucopolysaccharidosis. J Pediatr 1973;82:249–257.
  • Chang HW, Friedman ME, Hileman DL, Parish EJ. Inhibition of human synovial beta-glucuronidase by steroidal compounds. J Enzym Inhib 1992;6:331–335.
  • Kawasaki M, Hayashi T, Arisawa M, Morita N, Berganza LH. 8-Hydroxytricetin 7-glucuronide, a β-glucuronidase inhibitor from Scoparia dulcis. Phytochemistry 1988;27:3709–3711.
  • Hayashi T, Kawasaki M, Okamura K, Tamada Y, Morita N, Tezuka Y, Kikuchi T, Miwa Y, Taga T. Scoparic acid A, a beta-glucuronidase inhibitor from Scoparia dulcis. J Nat Prod 1992;12:748–1755.
  • Kushinsky S, Chen VL. Urinary inhibitors of β-glucuronidase. Enzym Biol Clin 1967;8:266–282.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.