837
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Association of β-amyloid peptide fragments with neuronal nitric oxide synthase: Implications in the etiology of Alzheimers disease

, &
Pages 356-364 | Received 10 Mar 2011, Accepted 19 May 2011, Published online: 24 Jun 2011

References

  • Soto C, Brañes MC, Alvarez J, Inestrosa NC. Structural determinants of the Alzheimer’s amyloid beta-peptide. J Neurochem 1994;63:1191–1198.
  • Findeis MA. The role of amyloid beta peptide 42 in Alzheimer’s disease. Pharmacol Ther 2007;116:266–286.
  • Yi J, Horky LL, Friedlich AL, Shi Y, Rogers JT, Huang X. L-arginine and Alzheimer’s disease. Int J Clin Exp Pathol 2009;2:211–238.
  • Arif M, Kato T. Increased expression of PAD2 after repeated intracerebroventricular infusions of soluble Abeta(25-35) in the Alzheimer’s disease model rat brain: effect of memantine. Cell Mol Biol Lett 2009;14:703–714.
  • Soto C, Castano E, Frangione B, Inestrosa NC. The α-helical to β-strand transition in the N-terminal fragment of the amyloid β-peptide modulates amyloid formation. J Biol Chem 1995;266:4025–4028.
  • Louw C, Gordon A, Johnston N, Mollatt C, Bradley G, Whiteley CG. Arginine deiminases: therapeutic tools in the etiology and pathogenesis of Alzheimer’s disease. J Enzyme Inhib Med Chem 2007;22:121–126.
  • Mohlake P, Whiteley CG. Arginine metabolising enzymes as therapeutic tools for Alzheimer’s disease: peptidyl arginine deiminase catalyses fibrillogenesis of beta-amyloid peptides. Mol Neurobiol 2010;41:149–158.
  • Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E et al. Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 2000;6:143–150.
  • Gorevic PD, Castano EM, Sarma R, Frangione B. Ten to fourteen residue peptides of Alzheimer’s disease protein are sufficient for amyloid fibril formation and its characteristic x-ray diffraction pattern. Biochem Biophys Res Commun 1987;147:854–862.
  • Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW. Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J Neurochem 1995;64:253–265.
  • Gruden MA, Davidova TB, Malisauskas M, Sewell RD, Voskresenskaya NI, Wilhelm K et al. Differential neuroimmune markers to the onset of Alzheimer’s disease neurodegeneration and dementia: autoantibodies to Abeta((25-35)) oligomers, S100b and neurotransmitters. J Neuroimmunol 2007;186:181–192.
  • Evans KC, Berger EP, Cho CG, Weisgraber KH, Lansbury PT Jr. Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc Natl Acad Sci USA 1995;92:763–767.
  • Klunk WE, Pettegrew JW, Abraham DJ. Two simple methods for quantifying low-affinity dye-substrate binding. J Histochem Cytochem 1989;37:1293–1297.
  • Naiki H, Higuchi K, Nakakuki K, Takeda T. Kinetic analysis of amyloid fibril polymerization in vitro. Lab Invest 1991;65:104–110.
  • Le Vine H. Thioflavin T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Prot Sci 1993;2:404–410.
  • Le Vine H. Quantification of β-sheet amyloid fibril structures with Thioflavin-T. Methods Enzymol 1999;309:274–284.
  • Boyde TR, Rahmatullah M. Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. Anal Biochem 1980;107:424–431.
  • Sakakibara Y, Yanagisawa H. Agmatine deiminase from cucumber seedlings is a mono-specific enzyme: purification and characteristics. Protein Expr Purif 2003;30:88–93.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–254.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–685.
  • Packer L. (1994). Methods in Enzymol: Oxygen radicals in biological systems: Part C. Academic Press Inc, USA. 233.
  • Rosazza JPN, Chen C. Purified nitric oxide synthase from rat brain. University of Iowa Research Foundation. 1996;675:821.
  • Riveros-Moreno V, Heffernan B, Torres B, Chubb A, Charles I, Moncada S. Purification to homogeneity and characterisation of rat brain recombinant nitric oxide synthase. Eur J Biochem 1995;230:52–57.
  • Hiki K, Hattori R, Kawai C, Yui Y. Purification of insoluble nitric oxide synthase from rat cerebellum. J Biochem 1992;111:556–558.
  • Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 1990;87:682–685.
  • Hawe A, Sutter M, Jiskoot W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 2008;25:1487–1499.
  • Krebs MR, Bromley EH, Donald AM. The binding of thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol 2005;149:30–37.
  • Biancalana M, Makabe K, Koide A, Koide S. Molecular mechanism of thioflavin-T binding to the surface of beta-rich peptide self-assemblies. J Mol Biol 2009;385:1052–1063.
  • Choo-Smith LP, Garzon-Rodriguez W, Glabe CG, Surewicz WK. Acceleration of amyloid fibril formation by specific binding of Abeta-(1-40) peptide to ganglioside-containing membrane vesicles. J Biol Chem 1997;272:22987–22990.
  • McLaurin J, Franklin T, Fraser PE, Chakrabartty A. Structural transitions associated with the interaction of Alzheimer beta-amyloid peptides with gangliosides. J Biol Chem 1998;273:4506–4515.
  • Kim S, Jeon TJ, Oberai A, Yang D, Schmidt JJ, Bowie JU. Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. Proc Natl Acad Sci USA 2005;102:14278–14283.
  • Munter LM, Voigt P, Harmeier A, Kaden D, Gottschalk KE, Weise C et al. GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42. Embo J 2007;26:1702–1712.
  • Yazawa H, Yu ZX, Takeda Le, Y, Gong W, Ferrans VJ et al. Beta amyloid peptide (Aβ42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. Faseb J 2001;15:2454–2462.
  • Wetzel R. Characterisation of in vitro protein deposition Methods Enzymology 1999;309:189–476.
  • Esler WP, Stimson ER, Mantyh PW, Maggio JE. Deposition of soluble amyloid-beta onto amyloid templates: with application for the identification of amyloid fibril extension inhibitors. Meth Enzymol 1999;309:350–374.
  • Terzi E, Hölzemann G, Seelig J. Interaction of Alzheimer beta-amyloid peptide(1-40) with lipid membranes. Biochemistry 1997;36:14845–14852.
  • Lansbury P. Jnr, Rochet J. Amyloid fibrillogenesis: themes and variations. Curr Opin:Struct Biol 2000;10:60–68.
  • Caflisch A, Pellarin R. Interpreting the aggregation kinetics of amyloid peptides. J Mol Biol 2006;360:882–892.
  • Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 2006;27:570–575.
  • Fülop L, Zarándi M, Soos K, Penke B. Self-assembly of Alzheimer’s disease-related amyloid peptides into highly ordered nanostructures. Nanopages 2006;1:69–83.
  • Chakrabartty A, Fraser PE, Yip CM, Go S, Plaskos NP, Yang D, Huang THJ. Structural studies of soluble oligomers of the Alzheimer β-amyloid peptide. J Molec Biol 2000;297:73–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.