1,249
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Optimization of peptidyl allyl sulfones as clan CA cysteine protease inhibitors

, , , , , & show all
Pages 468-478 | Received 24 Nov 2011, Accepted 16 Dec 2011, Published online: 01 Mar 2012

References

  • Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci 1997;22:299–306.
  • Otto HH, Schirmeister T. Cysteine Proteases and Their Inhibitors. Chem Rev 1997;97:133–171.
  • Hedstrom L. Serine protease mechanism and specificity. Chem Rev 2002;102:4501–4524.
  • Tong L. Viral proteases. Chem Rev 2002;102:4609–4626.
  • Barrett AJ, Rawlings ND, Woessner JF. Handbook of Proteolytic Enzymes. 2nd Edition. San Diego: Elsevier; 2004.
  • Lecaille F, Kaleta J, Broemme D. Human and Parasitic Papain-Like Cysteine Proteases: Their role in physiology and pathology and recent developments in inhibitor design. J ChemInform 2003;34:4459–4488.
  • Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database. Nucleic Acids Res 2010;38:D227–D233.
  • Sorimachi H, Suzuki K. The structure of calpain. J Biochem 2001;129:653–664.
  • Johnson P. Calpains (intracellular calcium-activated cysteine proteinases): structure-activity relationships and involvement in normal and abnormal cellular metabolism. Int J Biochem 1990;22:811–822.
  • Chapman HA, Riese RJ, Shi GP. Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 1997;59:63–88.
  • Mueller-Steiner S, Zhou Y, Arai H, Roberson ED, Sun B, Chen J et al. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer’s disease. Neuron 2006;51:703–714.
  • Joyce JA, Baruch A, Chehade K, Meyer-Morse N, Giraudo E, Tsai FY et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 2004;5:443–453.
  • Yan S, Sameni M, Sloane BF. Cathepsin B and human tumor progression. Biol Chem 1998;379:113–123.
  • Turk V, Turk B, Turk D. Lysosomal cysteine proteases: facts and opportunities. EMBO J 2001;20:4629–4633.
  • Turk B, Turk D, Turk V. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 2000;1477:98–111.
  • Brömme D, Klaus JL, Okamoto K, Rasnick D, Palmer JT. Peptidyl vinyl sulphones: a new class of potent and selective cysteine protease inhibitors: S2P2 specificity of human cathepsin O2 in comparison with cathepsins S and L. Biochem J 1996;315 (Pt 1):85–89.
  • Marquis RW, Ru Y, LoCastro SM, Zeng J, Yamashita DS, Oh HJ et al. Azepanone-based inhibitors of human and rat cathepsin K. J Med Chem 2001;44:1380–1395.
  • Godat E, Chowdhury S, Lecaille F, Belghazi M, Purisima EO, Lalmanach G. Inhibition of a cathepsin L-like cysteine protease by a chimeric propeptide-derived inhibitor. Biochemistry 2005;44:10486–10493.
  • Reis FC, Costa TF, Sulea T, Mezzetti A, Scharfstein J, Brömme D et al. The propeptide of cruzipain–a potent selective inhibitor of the trypanosomal enzymes cruzipain and brucipain, and of the human enzyme cathepsin F. FEBS J 2007;274:1224–1234.
  • Woo J-T, Sigeizumi S, Yamaguchi K, Sugimoto K, Kobori T, Tsuji T et al. Peptidyl aldehyde derivatives as potent and selective inhibitors of cathepsin L. Bioorg Med Chem Lett 1995;5:1501–1504.
  • Ahmed NK, Martin LA, Watts LM, Palmer J, Thornburg L, Prior J et al. Peptidyl fluoromethyl ketones as inhibitors of cathepsin B. Implication for treatment of rheumatoid arthritis. Biochem Pharmacol 1992;44:1201–1207.
  • Turk D, Podobnik M, Popovic T, Katunuma N, Bode W, Huber R et al. Crystal structure of cathepsin B inhibited with CA030 at 2.0-A resolution: A basis for the design of specific epoxysuccinyl inhibitors. Biochemistry 1995;34:4791–4797.
  • Eakin AE, Mills AA, Harth G, McKerrow JH, Craik CS. The sequence, organization, and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. J Biol Chem 1992;267:7411–7420.
  • McKerrow JH, Sun E, Rosenthal PJ, Bouvier J. The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol 1993;47:821–853.
  • Aparicio IM, Scharfstein J, Lima AP. A new cruzipain-mediated pathway of human cell invasion by Trypanosoma cruzi requires trypomastigote membranes. Infect Immun 2004;72:5892–5902.
  • Chagas disease (American trypanosomiasis): Fact sheet N340. WHO Media Centre 2010; Available at: http://www.who.int/mediacentre/factsheets/fs340/en/index.html.
  • Garcia S, Ramos CO, Senra JF, Vilas-Boas F, Rodrigues MM, Campos-de-Carvalho AC et al. Treatment with benznidazole during the chronic phase of experimental Chagas’ disease decreases cardiac alterations. Antimicrob Agents Chemother 2005;49:1521–1528.
  • Boiani M, Piacenza L, Hernández P, Boiani L, Cerecetto H, González M et al. Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved? Biochem Pharmacol 2010;79:1736–1745.
  • Coura JR, Castro SLd. A critical review on chagas disease chemotherapy. Mem Inst Oswaldo Cruz 2002;97:3–24.
  • Castro JA, de Mecca MM, Bartel LC. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum Exp Toxicol 2006;25:471–479.
  • Powers JC, Asgian JL, Ekici OD, James KE. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 2002;102:4639–4750.
  • Mott BT, Ferreira RS, Simeonov A, Jadhav A, Ang KK, Leister W et al. Identification and optimization of inhibitors of Trypanosomal cysteine proteases: cruzain, rhodesain, and TbCatB. J Med Chem 2010;53:52–60.
  • Li Z, Patil GS, Golubski ZE, Hori H, Tehrani K, Foreman JE et al. Peptide alpha-keto ester, alpha-keto amide, and alpha-keto acid inhibitors of calpains and other cysteine proteases. J Med Chem 1993;36:3472–3480.
  • Brak K, Doyle PS, McKerrow JH, Ellman JA. Identification of a new class of nonpeptidic inhibitors of cruzain. J Am Chem Soc 2008;130:6404–6410.
  • Asgian JL, James KE, Li ZZ, Carter W, Barrett AJ, Mikolajczyk J et al. Aza-peptide epoxides: a new class of inhibitors selective for clan CD cysteine proteases. J Med Chem 2002;45:4958–4960.
  • Du X, Guo C, Hansell E, Doyle PS, Caffrey CR, Holler TP et al. Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J Med Chem 2002;45:2695–2707.
  • dos Santos Filho JM, Leite AC, de Oliveira BG, Moreira DR, Lima MS, Soares MB et al. Design, synthesis and cruzain docking of 3-(4-substituted-aryl)-1,2,4-oxadiazole-N-acylhydrazones as anti-Trypanosoma cruzi agents. Bioorg Med Chem 2009;17:6682–6691.
  • Hernandes MZ, Rabello MM, Leite AC, Cardoso MV, Moreira DR, Brondani DJ et al. Studies toward the structural optimization of novel thiazolylhydrazone-based potent antitrypanosomal agents. Bioorg Med Chem 2010;18:7826–7835.
  • Palmer JT, Rasnick D, Klaus JL, Brömme D. Vinyl sulfones as mechanism-based cysteine protease inhibitors. J Med Chem 1995;38:3193–3196.
  • Götz MG, Caffrey CR, Hansell E, McKerrow JH, Powers JC. Peptidyl allyl sulfones: a new class of inhibitors for clan CA cysteine proteases. Bioorg Med Chem 2004;12:5203–5211.
  • Ettari R, Nizi E, Di Francesco ME, Dude MA, Pradel G, Vicík R et al. Development of peptidomimetics with a vinyl sulfone warhead as irreversible falcipain-2 inhibitors. J Med Chem 2008;51:988–996.
  • Engel JC, Doyle PS, Hsieh I, McKerrow JH. Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J Exp Med 1998;188:725–734.
  • Jacobsen W, Christians U, Benet LZ. In vitro evaluation of the disposition of A novel cysteine protease inhibitor. Drug Metab Dispos 2000;28:1343–1351.
  • Doyle PS, Zhou YM, Engel JC, McKerrow JH. A cysteine protease inhibitor cures Chagas’ disease in an immunodeficient-mouse model of infection. Antimicrob Agents Chemother 2007;51:3932–3939.
  • Barr SC, Warner KL, Kornreic BG, Piscitelli J, Wolfe A, Benet L et al. A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi. Antimicrob Agents Chemother 2005;49:5160–5161.
  • Kerr ID, Lee JH, Farady CJ, Marion R, Rickert M, Sajid M et al. Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J Biol Chem 2009;284:25697–25703.
  • Wadsworth DH, Schupp OE, Seus EJ, Ford JA. The stereochemistry of the phosphonate modification of the Wittig reaction. J Org Chem 1965;30:680–685.
  • Maring CJ, Stoll VS, Zhao C, Sun M, Krueger AC, Stewart KD et al. Structure-based characterization and optimization of novel hydrophobic binding interactions in a series of pyrrolidine influenza neuraminidase inhibitors. J Med Chem 2005;48:3980–3990.
  • Bieth JG. Theoretical and practical aspects of proteinase inhibition kinetics. Meth Enzymol 1995;248:59–84.
  • Walker B, Elmore DT. The irreversible inhibition of urokinase, kidney-cell plasminogen activator, plasmin and beta-trypsin by 1-(N-6-amino-n-hexyl)carbamoylimidazole. Biochem J 1984;221:277–280.
  • Eakin AE, McGrath ME, McKerrow JH, Fletterick RJ, Craik CS. Production of crystallizable cruzain, the major cysteine protease from Trypanosoma cruzi. J Biol Chem 1993;268:6115–6118.
  • Hine J, Linden S-M, Wang A, Thiagarajan V. Structural effects on rates and equilibriums. 21. Double-bond-stabilizing abilities of dimethylamino, alkylsulfonyl, and acetyl substituents. J Org Chem 1980;45:2821–2825.
  • Inomata K, Hirata T, Suhara H, Kinoshita H, Kotake H, Senda AH. Stereochemistry of the Conversion of γ-substituted (E)-vinylsulfones to the corresponding allyl sulfones. Determination of the relative degree of “syn-effect”. Chem Lett 1988;17:2009–2012.
  • Hine J, Skoglund MJ. Effects of 57 substituents on the stabilities of carbon-carbon double bonds. J Org Chem 1982;47:4766–4770.
  • Belostotskii AM, Albeck A, Hassner A. Asymmetric induction by a remote chiral substituent − computationally determined stereodifferentiation in michael additions of α-lithiated allyl sulfones. Eur J Org Chem 2007;2007:4837–4844.
  • Hirata T, Sasada Y, Ohtani T, Asada T, Kinoshita H, Senda H et al. ChemInform abstract: “Syn-effect” in the conversion of (e)-vinylic sulfones to the corresponding allylic sulfones. J ChemInform 1992;23.
  • Jones CR, Butts CP, Harvey JN. Accuracy in determining interproton distances using Nuclear Overhauser Effect data from a flexible molecule. Beilstein J Org Chem 2011;7:145–150.
  • Neuhaus D, Williamson MP. The nuclear overhauser effect in structural and conformational analysis. 2nd Edition. Wiley-VCH; 2000
  • Schnell S, Mendoza C. The condition for pseudo-first-order kinetics in enzymatic reactions is independent of the initial enzyme concentration. Biophys Chem 2004;107:165–174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.