6,508
Views
39
CrossRef citations to date
0
Altmetric
Review Article

Enzymatic biotransformation of terpenes as bioactive agents

&
Pages 1113-1128 | Received 23 Aug 2012, Accepted 03 Sep 2012, Published online: 09 Oct 2012

References

  • Nighat S, Ather A. Oleanolic acid and related derivatives as medicinally important compounds. J Enzym Inhib Med Chem 2008;23:739–756.
  • Nighat S. Clinically useful anticancer, antitumor and antiwrinkle agent, ursolic acid and related derivatives as medicinally important natural product. J Enzym Inhib Med Chem 2011;26:616–642.
  • Carla de Carvalho CCR, Manuela M, Da Fonseca R. Biotransformation of terpenes. Biotechnol Adv 2006;24:134–142.
  • Setzer WN, Setzer MC. Plant-derived triterpenoids as potential antineoplastic agents. Mini-Rev Med Chem 2003;3:540–556.
  • Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N et al. Plants and human health in the twenty-first century. Trends Biotechnol 2002;20:522–531.
  • Liby KT, Yore MM, Sporn MB. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 2007;7:357–369.
  • Laszczyk MN. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med 2009;75:1549–1560.
  • Petronelli A, Pannitteri G, Testa U. Triterpenoids as new promising anticancer drugs. Anticancer Drugs 2009;20:880–892.
  • Wang X, Zhang F, Yang L, Mei Y, Long H, Zhang X, et al. Ursolic acid inhibits, proliferation and induces apoptosis of cancer cells in vitro and in vivo. J Biomed Biotechnol 2011.
  • Chen JC, Chiu MH, Nie RL, Cordell GA, Qiu SX. Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat Prod Rep 2005;22:386–399.
  • Blaskovich MA, Sun J, Cantor A, Turkson J, Jove R, Sebti SM. Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res 2003;63:1270–1279.
  • Sun J, Blaskovich MA, Jove R, Livingston SK, Coppola D, Sebti SM. Cucurbitacin Q: a selective STAT3 activation inhibitor with potent antitumor activity. Oncogene 2005;24:3236–3245.
  • Rodriguez N, Vasquez Y, Hussein AA, Coley PD, Solis PN, Gupta MP. Cytotoxic cucurbitacin constituents from Sloanea zuliaensis. J Nat Prod 2003;66:1515–1516.
  • Jayaprakasam B, Seeram NP, Nair MG. Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana. Cancer Lett 2003;189:11–16.
  • Olmedo D, Rodríguez N, Vásquez Y, Solís PN, López-Pérez JL, Feliciano AS et al. A new coumarin from the fruits of Coutarea hexandra. Nat Prod Res 2007;21:625–631.
  • Yang L, Wu S, Zhang Q, Liu F, Wu P. 23,24-Dihydrocucurbitacin B induces G2/M cell-cycle arrest and mitochondria-dependent apoptosis in human breast cancer cells (Bcap37). Cancer Lett 2007;256:267–278.
  • Wakimoto N, Yin D, O’Kelly J, Haritunians T, Karlan B, Said J et al. Cucurbitacin B has a potent antiproliferative effect on breast cancer cells in vitro and in vivo. Cancer Sci 2008;99:1793–1797.
  • Kongtun S, Jiratchariyakul W, Kummalue T, Tan-ariya P, Kunnachak S, Frahm AW. Cytotoxic properties of root extract and fruit juice of Trichosanthes cucumerina. Planta Med 2009;75:839–842.
  • Ramalhete C, Mansoor TA, Mulhovo S, Molnár J, Ferreira MJ. Cucurbitane-type triterpenoids from the African plant Momordica balsamina. J Nat Prod 2009;72:2009–2013.
  • Phongmaykin J, Kumamoto T, Ishikawa T, Suttisri R, Saifah E. A new sesquiterpene and other terpenoid constituents of Chisocheton penduliflorus. Arch Pharm Res 2008;31:21–27.
  • Tsai ZT, Liaw SL. (1985). The use and the effect of ganoderma. Taichung: San Yun Press.
  • Yeh CT, Rao YK, Yao CJ, Yeh CF, Li CH, Chuang SE, et al. Cytotoxic triterpenes from Antrodia camphorate and their mode of action in HT-29 human colon cancer cells. Cancer Lett 2009;285:73–79.
  • Setzer WN, Holland MT, Bozeman CA, Rozmus GF, Setzer MC, Moriarity DM et al. Isolation and frontier molecular orbital investigation of bioactive quinone-methide triterpenoids from the bark of Salacia petenensis. Planta Med 2001;67:65–69.
  • Chang FR, Hayashi K, Chen IH, Liaw CC, Bastow KF, Nakanishi Y et al. Antitumor agents. 228. five new agarofurans, Reissantins A-E, and cytotoxic principles from Reissantia buchananii. J Nat Prod 2003;66:1416–1420.
  • Wu CC, Chan ML, Chen WY, Tsai CY, Chang FR, Wu YC. Pristimerin induces caspase-dependent apoptosis in MDA-MB-231 cells via direct effects on mitochondria. Mol Cancer Ther 2005;4:1277–1285.
  • Idris AI, Libouban H, Nyangoga H, Landao-Bassonga E, Chappard D, Ralston SH. Pharmacologic inhibitors of IkappaB kinase suppress growth and migration of mammary carcinosarcoma cells in vitro and prevent osteolytic bone metastasis in vivo. Mol Cancer Ther 2009;8:2339–2347.
  • Sung B, Park B, Yadav VR, Aggarwal BB. Celastrol, a triterpene, enhances TRAIL-induced apoptosis through the downregulation of cell survival proteins and upregulation of death receptors. J Biol Chem 2010;285:11498–11507.
  • Zeng L, Gu ZM, Chang CJ, Wood KV, McLaughlin JL. Meliavolkenin, a new bioactive triterpenoid from Melia volkensii (Meliaceae). Bioorg Med Chem 1995;3:383–390.
  • Rogers LL, Zeng L, Kozlowski JF, Shimada H, Alali FQ, Johnson HA et al. New bioactive triterpenoids from Melia volkensii. J Nat Prod 1998;61:64–70.
  • Setzer WN, Setzer MC, Bates RB, Jackes BR. Biologically active triterpenoids of Syncarpia glomulifera bark extract from Paluma, north Queensland, Australia. Planta Med 2000;66:176–177.
  • Amico V, Barresi V, Condorelli D, Spatafora C, Tringali C. Antiproliferative terpenoids from almond hulls (Prunus dulcis): identification and structure-activity relationships. J Agric Food Chem 2006;54:810–814.
  • Rzeski W, Stepulak A, Szymanski M, Sifringer M, Kaczor J, Wejksza K et al. Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells. Naunyn Schmiedebergs Arch Pharmacol 2006;374:11–20.
  • Basu S, Ma R, Boyle PJ, Mikulla B, Bradley M, Smith B et al. Apoptosis of human carcinoma cells in the presence of potential anti-cancer drugs: III. Treatment of Colo-205 and SKBR3 cells with: cis -platin, Tamoxifen, Melphalan, Betulinic acid, L-PDMP, L-PPMP, and GD3 ganglioside. Glycoconj J 2004;20:563–577.
  • Kessler JH, Mullauer FB, de Roo GM, Medema JP. Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types. Cancer Lett 2007;251:132–145.
  • Rzeski W, Stepulak A, Szymanski M, Juszczak M, Grabarska A, Sifringer M et al. Betulin elicits anti-cancer effects in tumour primary cultures and cell lines in vitro. Basic Clin Pharmacol Toxicol 2009;105:425–432.
  • Lambertini E, Lampronti I, Penolazzi L, Khan MT, Ather A, Giorgi G et al. Expression of estrogen receptor alpha gene in breast cancer cells treated with transcription factor decoy is modulated by Bangladeshi natural plant extracts. Oncol Res 2005;15:69–79.
  • Sticher O. (1977). In new natural products and plant drugs with pharmacological, biological or therapeutical activity. Wagner H, Wolff P, eds. Berlin: Springer, 1–22.
  • Barrero AF, Oltra JE, Raslan DS, Saude DA. Microbial transformation of sesquiterpene lactones by the fungi cunninghamella echinulata and rhizopus oryzae. J Nat Prod 1999;62:726–729.
  • EI Syed KA, Hamann MT, Wadling CA, Jansen C, Lee SK, Dunstan CA, et al. Microbial transformation of podocarpic acid and evaluation of transformation products for antioxidant activity. J  Org Chem 1998;63:7449–7455.
  • Khalid A, Syed EI, Mayer AMS, Kelly M, Hamann MT. The biocatalytic transformation of furan to amide in the bioactive marine natural product palinurin. J Org Chem 1999;64:9258–9260.
  • Purohit SS. (2004). Biotechnology fundamentals and applications. 3rd Edition. Jodhpur, India: Shyam Printing press, 392–393.
  • Boyle AW, Phelps CD, Young LY. Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4, 6-tribromophenol. Appl Environ Microbiol 1999;65:1133–1140.
  • Roberts SMN, Turner J, Willetts AJ, Turner MK. (1995). Introduction to biocatalysis using enzymes and micro organisms. Cambridge, UK: Cambridge University Press.
  • Holland HL. (1992). Organic synthesis with oxidative enzymes. New York: VCH Publishers, 6.
  • Alexander LS, Goff HM. Chemicals, cancer and cytochrome P-4. J Chem Edu 1982;59:179.
  • Wang JC, Staba JE. Peppermint and spearmint tissue culture. ii. dual-carboy culture of spearmint tissues. J Pharm Sci 1963;52:1058.
  • Becker H. Untersuchungen Zur Frange der Building Fluchtiger stoffwechsel produkte in calluskutturen. Biochem Physiol Pflanz 1970;161:425.
  • Suga T, Hirata T, Yamamoto Y. Biotransformation of exogenous substrates by plant cell cultures. Agric Biol Chem 1980;44:325.
  • Bohm H. In Proceedings of the 5th International Congress on plant tissue and cell culture, 1982, 325.
  • Furuya T, Thorpe TA, ed. (1978). Frontiers of plant Tissue Culture. Calgary: University of Calgary, 191.
  • Charlwood VB, Hegatry KP, Charlwood AK, Morris, P. (1986). Scragg HA, Stafford A, Fowler WM, eds. Secondary Metabolism in Plant Cell Cultures. London: Cambridge University press, 15.
  • Lippin G, Tampion J, Sride J, Morris P, Scragg HA, Stafford A, Fowler WM, eds. (1986). Secondary Metabolism in Plant Cell Cultures. London: Cambridge University press, 113.
  • Suga T, Hirata T. Biotransformation of exogenous substrates by plant cell cultures. Phytochemistry 1990;29:2393.
  • Hamada H, Miyamoto Y, Nakajima N, Furuya T. Highly selective transformation by plant catalysts. J Mol Catal B Enzyme 1998;5:187.
  • Schmitt E, Dekant W, Stopper H. Assaying the estrogenicity of phytoestrogens in cells of different estrogen sensitive tissues. Toxicol In Vitro 2001;15:433–439.
  • Decroos K, Vanhemmens S, Cattoir S, Boon N, Verstraete W. Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol 2005;183:45–55.
  • Garcia-Granados A, Martinez A, Parra A, Rivas F. Manoyl-oxide biotransformations with filamentous fungi. Curr Org Chem 2007;11:679–692.
  • Arantes SF, Hanson JR. The biotransformation of sesquiterpenoids by Mucor plumbeus. Curr Org Chem 2007;11:657–663.
  • Demyttenaere JCR. (2001). Biotransformation of terpenoids by microorganisms. studies in natural products chemistry. Atta-ur-Rahman, ed. Amsterdam: Elsevier Science BV, 25, 125–178.
  • Parra A, Rivas F, Garcia-Granados A, Martinez A. Microbial transformation of triterpenoids. Mini-Rev Org Chem 2009:6:307–320.
  • Williams TR. (1979). Detoxication mechanism. London: Cunningham and Sons.
  • Orabi KY. Microbial transformation of the eudesmane sesquiterpene plectranthone. J Nat Prod 2000;63:1709–1711.
  • Maatooq GT. Microbial metabolism of partheniol by Mucor circinelloides. Phytochemistry 2002;59:39–44.
  • Hanson JR. (1995). An introduction to biotransformation in organic chemistry. Oxford: Oxford University press.
  • Atta-ur-Rahman, Muhammed IC, Syed GM. Novel hydroxylated enantiomers of (-) 3A,6,6,9A-tetramethylper hydronaphtho [2,1-B] furan as perfuming agents derived from a fungal fermentation process. United states patent application number; US 2006/0223883 A 1, 5 Oct. 2006.
  • Choudhary MI, Musharraf SG, Sami A, Atta-ur-Rahman. Microbial transformation of (-)-ambrox and sclareolide. Helv Chim Acta 2004;87:2685–2694.
  • Hashimoto T, Noma Y, Asakawa Y. Biotransformation of terpenoids from the crude drugs and animal origion by micro organisms. Heterocycles 2001;54:529.
  • Nasib A, Musharraf SG, Hussain S, Khan S, Anjum S, Ali S, et al. Biotransformation of (-)-ambrox by cell suspension cultures of Actinidia deliciosa. J Nat Prod 2006;69:957–959.
  • Rodriguez E, Towers GHN, Mitchell JC. Biological activities of sesquiterpene lactones. Phytochemistry 1976;15:1573–1580.
  • Tahara SZ, Farooq A. Oxidative metabolism of ambrox and sclareolide by Botrytis cinerea. Z Naturforsch 2000;55c:341–346.
  • Muhammed IC, Syed GM, Khan MTH, Abdelrahman D, Pervaz, M, Shaheen F, et al. Microbial transformation of (+)-isolongifolen-4-one. Helv Chim Acta 2003;86:3450–3460.
  • Aleu J, Hanson JR, Galan RH, Collado IG. Biotransformation of the fungistatic sesquiterpenoid patchoulol by botrytis cinerea. J Nat Prod 1999;62:437–440.
  • Muhammed IC, Syed GM, Nawas S, Shazia A, Pervez M, Fun H-K, et al. Microbial transformation of (-)-isolongifolol and butyrylcholinesterase inhibitory activity of transformed products. Bioorg Med Chem 2005;13:1939–1944.
  • Shimizu M, Shogawa H, Matsuzawa T, Yonezawa S, Hayashi T, Arisawa M et al. Anti-inflammatory constituents of topically applied crude drugs. IV. Constituents and anti-inflammatory effect of Paraguayan crude drug “alhucema” (Lavandula latifolia Vill.). Chem Pharm Bull 1990;38:2283–2284.
  • Choudhary MI, Siddiqui ZA, Nawaz SA, Atta-ur-Rahman. Microbial transformation and butyrylcholinesterase inhibitory activity of (-)-caryophyllene oxide and its derivatives. J Nat Prod 2006;69:1429–1434.
  • Collado GI, Hanson RJ, Hitchcock BP, Sanchez-Macias JA. Stereochemistry of epoxidation of some caryophyllenols. J Org Chem 1997;62:1965.
  • Yang D, Michel L, Chaumont JP, Millet-Clerc J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia 1999;148:79–82.
  • Duran R, Corrales E, Hernandez-Galan R, Collado IG. Biotransformation of caryophyllene oxide by botrytis cinerea. J Nat Prod 1999;62:41–44.
  • Muhammed IC, Siddique ZA, Saifullah SK, Musharraf SG, Atta-ur- Rahman. Biotransformation of caryophyllene oxide by cell suspension culture of Catharanthus roseus”. Z Naturforsch 2005;61b:197–200.
  • Zhang J, Cheng ZH, Yu BY, Cordellb GA, Qiu SQ. Novel biotransformation of pentacyclic triterpenoid acids by Nocardia sp. NRRL 5646. Tetrahedron Lett 2005;46:2337–2340.
  • Ibrahim A, Khalifa SI, Khafagi I, Youssef DT, Khan S, Mesbah M et al. Microbial metabolism of biologically active secondary metabolites from Nerium oleander L. Chem Pharm Bull 2008;56:1253–1258.
  • Oleander L. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Chem Pharm Bull 2008;56:1253–1258.
  • Chi H, Ji G-E. Transformation of ginsenosides Rb1and Re from panax ginseng by food micro organisms. Biotechnol Lett 2005;27:765–771.
  • Xin X, Liu Y, Ye M, Guo H, Guo D. Microbial transformation of glycyrrhetinic acid by Mucor polymorphosporus. Planta Med 2006;72:156–161.
  • Shirane N, Hashimoto Y, Ueda K, Takenaka H, Katoh K. Ring-A cleavage of 3-oxo-olean-12-en-28-oic acid by the fungus Chaetomium longirostre. Phytochemistry 1996;43:99–104.
  • Cheng ZH, Yu BY, Cordell GA, Qiu SX. Biotransformation of quinovic acid glycosides by microbes: direct conversion of the ursane to the oleanane triterpene skeleton by Nocardia sp. NRRL 5646. Org Lett 2004;6:3163–3165.
  • Chen QH, Liu J, Zhang HF, He GQ, Fu ML. The betulinic acid production from betulin through biotransformation by fungi. Enzyme Microb Tech 2009;45:175–180.
  • Qian LW, Zhang J, Liu JH, Yu BY. Direct microbial-catalyzed asymmetric [alpha]-hydroxylation of betulonic acid by Nocardia sp., NRRL 5646. Tetrahedron Lett 2009;50:2193–2195.
  • Kouzi SA, Chatterjee P, Pezzuto JM, Hamann MT. Microbial transformations of the antimelanoma agent betulinic acid. J Nat Prod 2000;63:1653–1657.
  • Chatterjee P, Kouzi SA, Pezzuto JM, Hamann MT. Biotransformation of the antimelanoma agent betulinic acid by Bacillus megaterium ATCC 13368. Appl Environ Microbiol 2000;66:3850–3855.
  • Akihisa T, Takamine Y, Yoshizumi K, Tokuda H, Kimura Y, Ukiya M et al. Microbial transformations of two lupane-type triterpenes and anti-tumor-promoting effects of the transformation products. J Nat Prod 2002;65:278–282.
  • Muhammed IC, Siddique ZA, Khan SS, Musharraf SG, Atta-ur- Rahman. Biotransformation of (–)-caryophyllene oxide by cell suspension culture of Catharanthus roseus. Z Naturforsch 2006;59b:197–200.
  • Barroso-González J, El Jaber-Vazdekis N, García-Expósito L, Machado JD, Zárate R, Ravelo AG et al. The lupane-type triterpene 30-oxo-calenduladiol is a CCR5 antagonist with anti-HIV-1 and anti-chemotactic activities. J Biol Chem 2009;284:16609–16620.
  • Qian K, Yu D, Chen CH, Huang L, Morris-Natschke SL, Nitz TJ et al. Anti-AIDS agents. 78. Design, synthesis, metabolic stability assessment, and antiviral evaluation of novel betulinic acid derivatives as potent anti-human immunodeficiency virus (HIV) agents. J Med Chem 2009;52:3248–3258.
  • Badria FA, Abu-Karam M, Mikhaeil BR, Maatooq GT, Amer MM. Anti-herpes activity of isolated compounds from frankincense. Biosci Biotechnol Res Asia 2003;1:1–10.
  • Nakagawa-Goto K, Yamada K, Taniguchi M, Tokuda H, Lee KH. Cancer preventive agents 9. Betulinic acid derivatives as potent cancer chemopreventive agents. Bioorg Med Chem Lett 2009;19:3378–3381.
  • Nguemfo EL, Dimo T, Dongmo AB, Azebaze AG, Alaoui K, Asongalem AE et al. Anti-oxidative and anti-inflammatory activities of some isolated constituents from the stem bark of Allanblackia monticola Staner L.C (Guttiferae). Inflammopharmacology 2009;17:37–41.
  • Fulda S, Kroemer G. Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov Today 2009;14:885–890.
  • Saleem M, Murtaza I, Tarapore RS, Suh Y, Adhami VM, Johnson JJ et al. Lupeol inhibits proliferation of human prostate cancer cells by targeting beta-catenin signaling. Carcinogenesis 2009;30:808–817.
  • Galal TM, Joseph JH. Microbial transformation of a mixture of argentatin A and incanilin. Z Naturforsch C 2002;57:489.
  • Mufflera K, Leipolda D, Schellera MC, Haasb C, Steingroewerb J. Biotransformation of triterpenes. Process Biochemistry 2011;46:1–15.
  • Tolstikov AG, Baltina AL, Shultz EE, Pokrovskyi AG. Glycyrrhizic acid. Russian J Bioorg Chem 1997;23:625.
  • Tolstikov AG, Baltina AL, Serduyk GN. Glycyrrhetic acid. J Pharm Chem 1998;32:5.
  • Muhammed IC, Siddiqui ZA, Nawaz SA, Atta-ur-Rahman. Microbial transformation of 18beta-glycyrrhetinic acid by Cunninghamella elegans and Fusarium lini, and lipoxygenase inhibitory activity of transformed products. Nat Prod Res 2009;23:507–513.
  • Collins DO, Reese PB. Biotransformation of cedrol by Curvularia lunata ATCC 12017. Phytochemistry 2001;56:417–421.
  • Baran JS, Langford DD, Liang C, Pitzele BS. Synthesis and biological activities of substituted glycyrrhetic acids. J Med Chem 1974;17:184–191.
  • Lands MEM. Mechanisms of actions of anti inflammatory drugs. Adv Drug Res 1985;14:147.
  • Yamada Y, Nakamura A, Yamamoto K, Kikuzaki H. Transformation of glycyrrhizic acid by Aspergillus spp. Biosci. Biotech Biochem 1994;58:436.
  • Muhammad I, EI Sayed AK, Mossa SJ, Al-Said SM, EI-Feraly FS, Clark AM, et al. Bioactive 12-oleanene triterpene and secotriterpene acids from Maytenus undata. J Nat Prod 2000;63:605.
  • Steinhilber D. 5-Lipoxygenase: a target for antiinflammatory drugs revisited. Curr Med Chem 1999;6:71–85.
  • Nie D, Honn KV. Cyclooxygenase, lipoxygenase and tumor angiogenesis. Cell Mol Life Sci 2002;59:799–807.
  • Muhammed S, Nighat S, Mustafa K. Biotransformation of a bioactive secondary metabolite from Alstonia scholaris. J Biocatal Biotransfor (Accepted, August 2012)
  • Akihisa TKW, Yoneima R, Suzuki T, Kimura Y. Biotransformation of cycloartane-type triterpenes by the fungus Glomerella fusarioides. J Nat Prod 2006;69:604–607.
  • Dong A, Ye M, Guo H, Zheng J, Guo D. Microbial transformation of ginsenoside Rb1 by Rhizopus stolonifer and Curvularia lunata. Biotechnol Lett 2003;25:339–344.
  • Han Y, Sun B, Jiang B, Hu X, Spranger MI, Zhang Y et al. Microbial transformation of ginsenosides Rb1, Rb3 and Rc by Fusarium sacchari. J Appl Microbiol 2010;109:792–798.
  • Maatooq G, El-Sharkawy S, Afifi MS, Rosazza JPN. Microbial transformation of cucurbitacin E 2-O-Î2-d-glucopyranoside. J Nat Prod 1995;58:165–171.
  • Kim MK, Lee JW, Lee KY, Yang DC. Microbial conversion of major ginsenoside rb(1) to pharmaceutically active minor ginsenoside rd. J Microbiol 2005;43:456–462.
  • Yang GE, Zhang Z, Bai H, Gong J, Wang Y, Li B, et al. Biotransformation of β-amyrin acetate by Rhodobacter sphaeroides. J Biosci Bioeng 2008;105:558–561.
  • Atta-ur-Rehman, Nighat S, Muhammed IC. Microbial transformation of oleanolic acid by Fusarium lini and α-glucosidase inhibitory activity of its transformed products. Nat Product Research 2008;22:489–494.
  • Boaventura DAM, Oliveria Hanson BARJ, Hitchcock BP, Takahashi AJ. The biotransformation of methyl ent-15-oxokaur-16-en-19-oate by Rhizopus stolonifer and Mucor plumbeus. Phytochemistry 1995;40:1667.
  • Ruzicka L, Janot MM. Kenntnis des Sclareol, Zur Höhere Terpenverbindungen L. Zur Kenntnis des Sclareols. Helv Chim Acta 1931;14:645.
  • Ipsen J, Fuska J, Foskova, A, Rossaza JP. Microbial transformations of natural antitumor agents. 21. Conversions of aphidicolin. J Org Chem 1982;47:3278.
  • Jassbi AR, Zamanizadehnajari S, Azar PA, Tahara S. Antibacterial diterpenoids from Astragalus brachystachys. Z Naturforsch, C, J Biosci 2002;57:1016–1021.
  • Ulubelen A, Miski M, Johansson C, Lee E, Mabry JT, Matlin AS. Terpenoids from Salvia palaestina. Phytochemistry 1985;24:1386.
  • Decorzant R, Vial C, Naf F, Whitesides MG. A short synthesis of ambrox from sclareol. Tetrahedron 1987;43:1871.
  • Ohloff G. (1982). In Fragrance Chemistry, The Science of the SEBSE of Smell. Theimer ET, ed. New York: Academic press, 535–573.
  • Díez D, Sanchez JM, Rodilla JM, Rocha PM, Mendes RS, Paulino C et al. Microbial hydroxylation of sclareol by Rhizopus stolonifer. Molecules 2005;10:1005–1009.
  • Braulio M, Fragaa P, Gonzá l, Melchor G, Herná N, Sergio S. The biotransformation of the diterpene 2-hydroxy-ent-13-epimanoyl oxide by Gibberella fujikuroi. Phytochemistry 2003;62:67–70.
  • Rosazza JP, Steffens JJ, Sariaslani FS, Goswami A, Beale JM, Reeg S et al. Microbial hydroxylation of 1,4-cineole. Appl Environ Microbiol 1987;53:2482–2486.
  • Demyttenaere RCJ, Pooter De LH. Biotransformation of geraniol and nerol by spores of penicillium italica. Phytochemistry 1996;41:1079.
  • Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999;12:564–582.
  • National N. (1994). Spices, Herbs and Edible Fungi. In: Charalambous G, ed. Amsterdam, The Netherlands: Elsevier Science BV, 251.
  • Bruneton J. (1995). Pharmacognosy, Phytochemistry, Medicinal plants. New York, USA: Lavoisier c/o Springer- Verlag, 431.
  • Karapinar M, Aktug SE. Inhibition of food borne pathogens by thymol, eugenol, menthol and anethol. . Int J. Food Microbiol 1987;4:161–166.
  • Asakawa Y, Takahashi H, Toyota M, Noma Y. Biotransformation of monoterpenenoids, (–)- and (+)-menthols, terpinolene and carvotanacetone by Aspergillus species. Phytochemistry 1991;30:3981.
  • Miyazawa M, Kawazoe H, Hyakumachi M. Biopreparation of (1S,3R,4S,6S)-6-hydroxymenthol and (–)-(1S,3R,4S)-1-hydroxymenthol from 1-menthol by Rhizoctonia solani AG-1-IA and IB. Nat Prod Res 2003;17:307–309.
  • Petrovic G, Saicic NR, Ckovic Z. Regioselective free radical phenylsulfenation of nonactivated δ-carbon atom by the photolysis of alkyl benzenesulfenates. Tetrahedron 2003;59:187–191.
  • Yoshifumi Y, Yoko, Y. Synthesis and absolute configuration at C(8) of ‘p-menthane-3,8,9-triol’ derived from (–)-isopulegol. Helv Chim Acta 2004;87:2602–2607.
  • Choudhary MI, Ranjit R, Atta-Ur-Rahman, Devkota KP, Musharraf SG, Shrestha TM. Hydroxylation of the sesterterpene leucosceptrine by the fungus Rhizopus stolonifer. Phytochemistry 2006;67:439–443.
  • Bastos DZ, Pimentel IC, de Jesus DA, de Oliveira BH. Biotransformation of betulinic and betulonic acids by fungi. Phytochemistry 2007;68:834–839.
  • Sathyamoorthy N, Wang TT. Differential effects of dietary phyto-oestrogens daidzein and equol on human breast cancer MCF-7 cells. Eur J Cancer 1997;33:2384–2389.
  • Ueno T, Uchiyama S, Kikuchi N. The role of intestinal bacteria on biological effects of soy isoflavones in humans. J Nutr 2002;132:594S.
  • Choudhary MI, Ranjit R, Atta-ur-Rahman, Devkota KP, Musharraf SG, Shrestha TM. Hydroxylation of the sesterterpene leucosceptrine by the fungus Rhizopus stolonifer. Phytochemistry 2006;67:439–443.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.