621
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Microwave-assisted synthesis of antimicrobial agents based on pyridazine moiety

, &
Pages 1307-1315 | Received 29 Aug 2012, Accepted 04 Oct 2012, Published online: 19 Nov 2012

References

  • Frank H, Heinisch G. Pharmacologically active pyridazines. In: Ellis GP, West GB (Eds). Progress in Medicinal Chemistry. Elsevier; Amsterdam, 1990, 1–49.
  • Li CS, Brideau C, Chan CC, Savoie C, Cleaveau D, Charleson S, Gordon R, Greig G, Cauthier JY, Lau CK, Riendeau D, Therien M, Wong E, Prasit P. Pyridazinones as selective cyclooxygenase-2 inhibitors. Bioorg Med Chem Lett 2003;13:597–600.
  • Giblin GMP, Bit RA, Brown SH, Chaignot HM, Chowdhury A, Chessel IP, Clayton NM, Coleman T, Hall A, Hammond B, Hurst DN, Michel A, Naylor A, Novelli R, Scocctti T, Spalding D, Tang SP, Wilson AW, Wilson R. The discovery of 6-[2-(5-chloro-2-{[(2,4-difluorophenyl)methyl]oxy}phenyl)-1-cyclopenten-1-yl]-2-pyridinecarboxylic acid, GW848687X, a potent and selective prostaglandin EP1 receptor antagonist for the treatment of inflammatory pain. Bioorg Med Chem Lett 2007;17:385–389.
  • Dorsch D, Mederski WWKR, Osswald M, Devant RM, Schmitges C-JJS, Christadler M, Wilm C. Pyridazinones with a pendant acylsulfonamide moiety as endothelin receptor antagonists. Bioorg Med Chem 1997;7:275–280.
  • Nomoto Y, Takai H, Ohno T, Nagashima K, Yao K, Yamada K, Kubo K, Ichimura M, Mihara A, Kase H. Studies of cardiotonic agents. 8. Synthesis and biological activities of optically active 6-(4-(benzylamino)-7-quinazolinyl)-4,5-dihydro-5-methyl-3(2H)-pyridazinone (KF15232). J Med Chem 1996;39:297–303.
  • Barbaro R, Betti I, Botta M, Corelli F, Giannaccini G, Maccari I, Manetti F, Strappaghetti G, Corsano S. Synthesis, biological evaluation, and pharmacophore generation of new pyridazinone derivatives with affinity toward α(1)- and α(2)-adrenoceptors. J Med Chem 2001;44:2118–2132.
  • Kandile NG, Mohamed MI, Zaky H, Mohamed HM. Novel pyridazine derivatives: Synthesis and antimicrobial activity evaluation. Eur J Med Chem 2009;44:1989–1996.
  • Husain A, Ahmad A, Mujeeb M, Akhter M. New amides of sulphonamides: synthesis and biological evalution. Chil J Chem Soc 2010;55:74–77.
  • Husain A. Amide derivatives of sulfonamides and isoniazid: synthesis and biological evaluation. Acta Pol Pharm 2009;66:513–521.
  • Drews J. Drug discovery: a historical perspective. Science 2000;287:1960–1964.
  • Supuran CT, Scozzafava A. Carbonic anhydrase inhibitors and their therapeutic potential. Exp Opin Ther Patents 2000;10:575–600.
  • Supuran CT, Scozzafava A. Carbonic anhydrase inhibitors. Curr Med Chem-Immunol Endocr Metabol Agents 2001;1:61–97.
  • Maren TH. Relatons between structure and biological activity of sulfonamides. Annu Rev Pharmacol Toxicol 1976;16:309–327.
  • Boyd AE 3rd. Sulfonylurea receptors, ion channels, and fruit flies. Diabetes 1988;37:847–850.
  • Thornber CW. Isosterism and molecular modification in drug design. Chem Soc Rev 1979;8:563–580.
  • Ogden RC, Flexner CW. ( Eds.) Protease Inhibitors in AIDS Therapy. New York: Marcel Dekker, 2001.
  • Scozzafava A, Mastrolorenzo A, Supuran CT. Agents that target cysteine residues of biomolecules and their therapeutic potential. Exp Opin Ther Patents 2001;11:765–787.
  • Scozzafava A, Supuran CT. Carbonic anhydrase and matrix metalloproteinase inhibitors: sulfonylated amino acid hydroxamates with MMP inhibitory properties act as efficient inhibitors of CA isozymes I, II, and IV, and N-hydroxysulfonamides inhibit both these zinc enzymes. J Med Chem 2000;43:3677–3687.
  • Casini A, Scozzafava A, Mastrolorenzo A, Supuran LT. Sulfonamides and sulfonylated derivatives as anticancer agents. Curr Cancer Drug Targets 2002;2:55–75.
  • Dua R, Shrivastava S, Sonwane SK, Srivastava SK. Pharmacological significance of synthetic heterocycles scaffold: a review. Advan Biol Res 2011;5:120–144.
  • Zaky HT, Mohamed MI, Nail AM, Kandile NG. Synthesis of some novel biologically active sulphonamides. Egypt J Chem 2004;47:321–331.
  • Mohamed MI. Synthesis and antimicrobial activity of new pyridazinyl sulfonamide derivatives. Bulg Chem Commun 2007;39:152–158.
  • Bahrami K, Khodaei MM, Soheilizad M. Direct conversion of thiols to sulfonyl chlorides and sulfonamides. J Org Chem 2009;74:9287–9291.
  • Mohamed MI, Zaky HT, Mohamed HM, Kandile NG. Novel heterocyclic systems of pyridazines. Afinidad 2005;62:48–56.
  • Zolfigola MA, Khazaeia A, Moosavi-Zarea AR, Zareb A. 3-Methyl-1-sulfonic acid imidazolium chloride as a new, efficient and recyclable catalyst and solvent for the preparation of N-sulfonyl imines at room temperature. J Iran Chem Soc 2010;7:646–651.
  • Ahmad S, Rathish IG, Bano S, Alam MS, Javed K. Synthesis and biological evaluation of some novel 6-aryl-2-(p-sulfamylphenyl)-4,5-dihydropyridazin-3(2H)-ones as anti-cancer, antimicrobial, and anti-inflammatory agents. J Enzyme Inhib Med Chem 2010;25:266–271.
  • Tading H, Mohamed E, Asres K, Gebre T. Antimicrobial activities of some selected traditional Ethiopian medicinal plants used in the treatment of skin disorders. J Ethnopharmacol 2005;100:168–175.
  • Karthikeyan SM, Prasad JD, Mahalinga M, Holla SB, Kumari SB. Antimicrobial studies of 2,4-dichloro-5-fluorophenyl containing oxadiazoles. Eur J Med Chem 2008;43:25–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.