1,208
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Discovery of butyrylcholinesterase inhibitors among derivatives of azaphenothiazines

, , , , , , , , & show all
Pages 98-106 | Received 21 Nov 2013, Accepted 26 Jan 2014, Published online: 25 Mar 2014

References

  • Pluta K, Morak-Młodawska B, Jeleń M. Recent progress in biological activities of synthesized phenothizines. Eur J Med Chem 2011;46:3179–89
  • Jaszczyszyn A, Gąsiorowski K, Świątek P, et al. Chemical structure of phenothiazines and their biological activity. Pharmacol Rep 2012;64:16–23
  • Küçükkilinç T, Özer I. Multi-site inhibition of human plasma cholinesterase by cationic phenoxazine and phenothiazine dyes. Archiv Biochem Biophys 2007;461:294–8
  • Darvesh S, Pottie IR, Darvesh KV, et al. Differential binding of phenothiazine urea derivatives to wild-type human cholinesterases and butyrylcholinesterase mutants. Bioorg Med Chem 2010;18:2332–44
  • González-Muñoz GC, Arce MP, López B, et al. Old phenothiazine and dibenzothiadiazepine derivatives for tomorrow’s neuroprotective therapies against neurodegenerative diseases. Eur J Med Chem 2010;45:6152–8
  • González-Muñoz GC, Arce MP, López B, et al. N-acylaminophenothiazines: neuroprotective agents displaying multifunctional activities for a potential treatment of Alzheimer’s disease. Eur J Med Chem 2011;46:2224–35
  • Taniguchi S, Suzuki N, Masuda M, et al. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J Biolog Chem 2005;280:7614–23
  • Radič Z, Pickering NA, Vellom DC, et al. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry 1993;32:12074–84
  • Saxena A, Redman AMG, Jiang X, et al. Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Biochemistry 1997;36:14642–51
  • Darvesh S, McDonald RS, Penwell A, et al. Structure-activity relationship for inhibition of human cholinesterases by alkyl amide phenothiazine derivatives. Bioorg Med Chem 2005;13:211–22
  • Darvesh S, McDonald RS, Darvesh KV, et al. Selective reversible inhibition of human butyrylcholinesterase by aryl amide derivatives of phenothiazine. Bioorg Med Chem 2007;15:6367–78
  • Debord J, Merle L, Bollinger JC, Dantoine T. Inhibition of butyrylcholinesterase by phenothiazine derivatives. J Enzyme Inhib Med Chem 2002;17:197–202
  • Oz M, Lorke DE, Petroianu GA. Methylene blue and Alzheimer’s disease. Biochem Pharmacol 2009;78:927–32
  • Oz M, Lorke DE, Hasan M, Petroianu GA. Cellular and molecular actions of Methylene Blue in the nervous system. Med Res Rev 2011;31:93–117
  • Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 2010;362:329–44
  • Davies P, Maloney JF. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976;2:1403
  • Rodda J, Carter J. Cholinesterase inhibitors and memantine for symptomatic treatment of dementia. BMJ 2012;344:e2986
  • Darvesh S, Hopkins DA, Geula C. Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 2003;4:131–8
  • Li B, Stribley JA, Ticu A, et al. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J Neurochem 2000;75:1320–31
  • Mesulam MM, Guillozet A, Shaw P, et al. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 2002;110:627–39
  • Bartolini M, Bertucci C, Cavrini V, Andrisano V. β-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol 2003;65:407–16
  • Diamant S, Podoly E, Friedler A, et al. Butyrylcholinesterase attenuates amyloid fibril formation in vitro. Proc Natl Acad Sci USA 2006;103:8628–33
  • Podoly E, Shalev DE, Shenhar-Tsarfaty S, et al. The Butyrylcholinesterase K variant confers structurally derived risks for Alzheimer pathology. J Biol Chem 2009;284:17170–9
  • Darreh-Shori T, Soininen H. Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: a review of recent clinical studies. Curr Alzh Res 2010;7:67–73
  • Dinamarca MC, Sagal JP, Quintanilla RA, et al. Amyloid-β-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Aβ peptide. Implications for the pathogenesis of Alzheimer’s disease. Mol Neurodegener 2010;5: 4. doi: 10.1186/1750-1326-5-4
  • Reid GA, Chilukuri N, Darvesh S. Butyrylcholinesterase and the cholinergic system. Neuroscience 2013;234:53–68
  • Giacobini E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol Res 2004;50:433–40
  • Greig NH, Utsuki T, Ingram DK, et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proc Natl Acad Sci USA 2005;102:17213–18
  • Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychoph 2006;9:101–24
  • Pepeu G, Giovannini MG. Cholinesterase inhibitors and beyond. Curr Alzh Res 2009;6:86–96
  • Musiał A, Bajda M, Malawska B. Recent developments in cholinesterases inhibitors for Alzheimer’s disease treatment. Curr Med Chem 2007;14:2654–79
  • Singh M, Kaur M, Kukreja H, et al. Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur J Med Chem 2013;70:165–88
  • Viayna E, Sabate R, Muñoz-Torrero D. Dual inhiitors of β-amyloid aggregation and acetylcholinesterase as multi-target anti-Alzheimer drug candidates. Curr Top Med Chem 2013;13:1820–42
  • Rizzo S, Tarozzi A, Bartolini M, et al. 2-Arylbenzofuran-based molecules as multipotent Alzheimer’s disease modifying agents. Eur J Med Chem 2012;58:519–32
  • Carolan CG, Dillon GP, Khan D, et al. Isosorbide-2-benzyl carbamate-5-salicylate, a peripheral anionic site binding subnanomolar selective butyrylcholinesterase inhibitor. J Med Chem 2010;53:1190–9
  • Yan JW, Li YP, Ye WJ, et al. Design, synthesis and evaluation of isaindigotone derivatives as dual inhibitors for acetylcholinesterase and amyloid beta aggregation. Bioorg Med Chem 2012;20:2527–34
  • Silva D, Chioua M, Samadi A, et al. Synthesis, pharmacological assessment, and molecular modeling of acetylcholinesterase/butyrylcholinesterase inhibitors: effect against amyloid-β-Induced neurotoxicity. ACS Chem Neurosci 2013;4:547–65
  • Bajda M, Ignasik M, Guzior N, Malawska B. Multi-target-directed ligands in Alzheimer’s disease treatment. Curr Med Chem 2011;18:4949–75
  • Bajda M, Kuder K, Łażewska D, et al. Dual-acting diether derivatives of piperidine and homopiperidine with histamine H3 receptor antagonistic and anticholinesterase activity. Archiv Pharm – Chem Life Sci 2012;345:591–7
  • Ignasik M, Bajda M, Guzior N, et al. Design, synthesis and evaluation of novel 2-(aminoalkyl)-isoindoline-1,3-dione derivatives as dual-binding site acetylcholinesterase inhibitors. Archiv Pharm – Chem Life Sci 2012;345:509–16
  • Jeleń M, Pluta K. Synthesis of 6-aminoalkyldiquinithiazines and their acyl and sulfonyl derivatives. Heterocycles 2008;75:859–70
  • Jeleń M, Pluta K. Synthesis of quinobenzo-1,4-thiazines from diquino-1,4-dithiin and 2,2′-dichloro-3,3′-diquinolinyl disulfide. Heterocycles 2009;78:2325–36
  • Pluta K, Jeleń M, Zimecki M, et al. New derivatives of quino[3,2-b]benzo[1,4]thiazine, methods of synthesis, application for obtaining medicines and pharmaceutical formulation and their methods of preparation. (polish), Polish Patent Appl P.398835 (16.04.2012)
  • Jeleń M, Pluta K, Zimecki M, et al. Synthesis and selected immunological properties of substituted quino[3,2-b]benzo[1,4]thiazines. Eur J Med Chem 2013;63:444–56
  • Online demo – Corina. Available from: http://www.molecularnetworks.com/online_demos/corina_demo [last accessed 21 Nov 2013]
  • Sybyl 8.0. St. Louis (MO): Tripos; 2007
  • Gold Suite 5.1, The Cambridge Crystallographic Data Centre: Cambridge, UK; 2011
  • PyMOL 0.99rc6. Palo Alto (CA): DeLano Scientific LLC; 2006
  • Bajda M, Więckowska A, Hebda H, et al. Structure-based search for new inhibitors of cholinesterases. Int J Mol Sci 2013;14:5608–32
  • Ellman GL, Courtney KD, Andres V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–90
  • Nowak M, Pluta K, Suwińska K, Straver L. Synthesis of new pentacyclic diquinothiazines. J Heterocycl Chem 2007;44:543–50
  • Zimecki M, Artym J, Kocięba M, et al. The immunosuppressive activities of newly synthesized azaphenothiazines in human and mouse models. Cell Mol Biol Lett 2009;14:622–35
  • Pluta K, Jeleń M, Morak-Młodawska B, et al. Anticancer activity of newly synthesized azaphenothiazines from NCI’s anticancer screening bank. Pharmacol Rep 2010;62:319–32
  • Protein Data Bank. Available from: http://www.pdb.org [last accessed 21 Nov 2013]
  • Lipinski CA, Lombardo F, Dominy BW, Feeney P. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. J Adv Drug Deliv Rev 1997;23:3–25
  • Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005;2:541–53
  • Nordberg A, Ballard C, Bullock R, et al. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim Care Companion CNS Disord 2013;15.doi: 10.4088/PCC.12r01412

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.