3,301
Views
29
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in novel heterocyclic scaffolds for the treatment of drug-resistant malaria

, , , &
Pages 173-186 | Received 22 Nov 2014, Accepted 19 Jan 2015, Published online: 16 Mar 2015

References

  • World Malaria Report. Geneva: World Health Organization; 2008
  • Ashley E, Gready RM, Proux S, et al. Malaria. Travel Med Infect Dis 2006;4:159–73
  • Lalloo DG. Malaria in adolescence: burden of disease, consequences and opportunities for intervention. Lancet Infect Dis 2006;6:780–93
  • Snow RW, Trape JF, Marsh K. The past, present and future of childhood malaria mortality in Africa. Trends Parasitol 2001;17:593–7
  • Breman JG. The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg 2001;64:1–11
  • Wongsrichanalai C, Pickard AL, Wernsdorfer WH, et al. Epidemiology of drug-resistant malaria. Lancet Infect Des 2002;2:209–18
  • White NJ. Antimalarial drug resistance: the pace quickens. J Antimicrob Chemother 1992;30:571–85
  • Sibley CH, Hyde JE, Sims PF, et al. Pyrimethamine–sulfadoxine resistance in Plasmodium falciparum. Trends Parasitol 2001;17:582–8
  • Ridley RG. Malaria: to kill a parasite. Nature 2002;415:686–93
  • Ruiz FA, Sanchez RNG, Estupinan SV, et al. Synthesis and antimalarial activity of new heterocyclic hybrids based on chloroquine and thiazolidinone scaffolds. Bioorg Med Chem 2011;19:4562–73
  • Kouznetsov VV, Gómez BA. Recent developments in the design and synthesis of hybrid molecules based on aminoquinoline ring and their antiplasmodial evaluation. Eur J Med Chem 2009;44:3091–113
  • Raynes KR. Bisquinoline antimalarials: their role in malaria chemotheraphy. Int J Parasitol 1999;29:367–79
  • Ayad F, Tilley L, Deady LW. Synthesis, antimalarial activity and inhibition of haem detoxification of novel bisquinolines. Bioorg Med Chem Lett 2001;11:2075–7
  • Vennerstrom JL, Ager AL, Dorn A, et al. Peroxides as antimalarials. Med Chem 1998;41:4360–4
  • Nagata K, Aistrup GL, Honda H, et al. Modulation of the nicotinic acetylcholine receptor by dioscorine in clonal rat Phaeochlomocytoma (Pc12) cells. Biochem Physiol 1999;64:157–65
  • Khan MOF, Levi MS, Tekwani BL. Synthesis of isoquinuclidine analogues of chloroquine, antimalarial and antileishmanial activity. Bioorg Med Chem 2007;15:3919–25
  • Madrid PB, Liou AP, DeRisi JL, et al. Incorporation of an intramolecular hydrogen-bonding motif in the side chain of 4-aminoquinolines enhances activity against drug resistant P. falciparum. Med Chem 2006;49:4535–43
  • Ruiz FAR, Sanchez RNG, Estupinan SV, et al. Synthesis and antimalarial activity of new heterocyclic hybrids based on chloroquine and thiazolidinone scaffolds. Bioorg Med Chem 2011;19:4562–73
  • Solomon VR, Haq W, Srivastava K, et al. Synthesis and antimalarial activity of side chain modified 4-aminoquinoline derivatives. Med Chem 2007;50:394–8
  • Jutta M, Ferryanto C, Pak P, et al. Ex vivo drug susceptibility of ferroquine against chloroquine-resistant isolates of P. falciparum and P. vivax. Antimicrob Agents Chemother 2011;55:4461–4
  • Marfurt J, Chalfein F, Prayoga P, et al. Ex vivo drug susceptibility of ferroquine against chloroquine-resistant isolates of P. falciparum and P. vivax. Antimicrob Agents Chemother 2011;55:4461–4
  • Ngoma GM, Supan CC, Bianco MPD, et al. Phase I randomized dose-ascending placebo controlled trials of ferroquine a candidate anti-malarial drug in adults with asymptomatic Plasmodium falciparum infection. Malaria J 2011;10:53. doi: 10.1186/1475-2875-10-53
  • O'Neill PM, Barton VE, Ward SA, et al. 4-Aminoquinolines: chloroquine amodiaquine and next-generation analogues. In: Staines HM, Krishna S, eds. Treatment and prevention of malaria. Springer Basel AG; 2012:19–44
  • Coslédan F, Fraisse L, Pellet A, et al. Selection of a trioxaquine as an antimalarial drug candidate. PNAS 2008;105:79–84
  • Garah FB, Stigliani JL, Cosledan F, et al. Docking studies of structurally diverse antimalarial drugs targeting PfATP6: no correlation between in silico binding affinity and in vitro antimalarial activity. ChemMedChem 2009;4:1469–79
  • O'Neill PM, Park BK, Shone AE, et al. Candidate selection and preclinical evaluation of N-tert-butyl isoquine (GSK369796), an affordable and effective 4-aminoquinoline antimalarial for the 21st century. J Med Chem 2009;52:1408–15
  • Perez BC, Teixeira C, Figueiras M, et al. Novel cinnamic acid/4-aminoquinoline conjugates bearing non-proteinogenic amino acids: towards the development of potential dual action antimalarials. EJMC 2012;54:887–99
  • Jain R, Jain S, Gupta RC, et al. Synthesis of aminoacid derivatives of 8-[(4-amino-1-methylbutyl)amino]-6-methoxy-4-substituted/4,5-disubstituted-quinolines as potential antimalarial agents. Indian J Chem 1994;33B:251–4
  • Kaur K, Jain M, Khan SI, et al. Synthesis, antiprotozoal, antimicrobial, β-hematin inhibition, cytotoxicity and methemoglobin formation activities of bis(8-aminoquinolines). Bioorg Med Chem 2011;19:197–210
  • Makler MT, Hinrichs DJ. Measurements of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. Am J Trop Med Hyg 1993;48:205–10
  • Tekwani BL, Walker LA. 8-Aminoquinolines: future role as antiprotozoal drugs. Curr Opin Infect Dis 2006;19:623–31
  • Chesney JM, Nanayakkara NPD, Bartlett M, et al. 8-Aminoquinolines, US Patent No. US 6376511 B2. 2008
  • Dutta AK, Stodghill SP, Wyandt CM. Physicochemical characterization of NPC 1161C, a novel antimalarial 8-aminoquinoline, in solution and solid state. AAPS Pharm Sci Tech 2011;12:177–91
  • Zhu S, Zhang Q, Gudise C, et al. Synthesis and evaluation of Naphthyridine compounds as antimalarial agents. Bioorg Med Chem Lett 2007;17:6101–6
  • Desjardins RE, Canfield CJ, Haynes DE, et al. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 1979;16:710–18
  • Chulay JD, Haynes JD, Diggs CL. Plasmodium falciparum: assessment of in vitro growth by hypoxanthine incorporation. Exp Parasitol 1983;55:138–46
  • Jain M, Vangapandu S, Sachdeva S, et al. 8-Quinolinamines conjugated with amino acids are exhibiting potent blood-schizontocidal antimalarial activities. Med Chem 2004;47:239–47
  • Nasveld PE, Edstein MD, Reid M, et al. Tafenoquine Study Team. Randomized, double-blind study of the safety, tolerability, and efficacy of tafenoquine versus mefloquine for malaria prophylaxis in nonimmune subjects. Antimicrob Agents Chemother 2010;54:792–8
  • Leary KJ, Riel MA, Roy MJ, et al. A randomized, doubleblind, safety and tolerability study to assess the ophthalmic and renal effects of tafenoquine 200 mg weekly versus placebo for 6 months in healthy volunteers. Am J Trop Med Hyg 2009;81:356–62
  • Kelly JX, Smilkstein MJ, Cooper RA, et al. Design, synthesis, and evaluation of 10-N-substituted acridones as novel chemosensitizers in Plasmodium falciparum. Antimicrob Agents Chemother 2007;51:4133–40
  • Calienes AF, Pellon R, Docampo M, et al. Antimalarial activity of new acridinone derivatives. Biomed Pharma 2011;65:210–14
  • Waffo AF, Coombes PH, Crouch NR, et al. Acridone and furoquinoline alkaloids from Teclea gerrardii (Rutaceae: Toddalioideae) of southern Africa. Phytochem 2007;68:663–7
  • Biagini GA, Fisher N, Berry N. Acridinediones: selective and potent inhibitors of the malaria parasite mitochondrial bc1 complex. Mol Pharmacol 2008;73:1347–55
  • Riscoe M, Winter R, Kelly J, et al. Evaluation and lead optimization of antimalarial aromatic ketones. Am J Trop Med Hyg 2006;75:97–8
  • Kelly JX, Smilkstein MJ, Brun R. Discovery of dual function acridones as a new antimalarial chemotype. Nature 2009;459:270–3
  • Gujjar R, Mazouni FE, White KL. Lead optimization of aryl and aralkyl amine-based triazolopyrimidine inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with antimalarial activity in mice. J Med Chem 2011;54:3935–49
  • Coteron JM, Marco M, Esquivias J. Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J Med Chem 2011;54:5540–61
  • Gujjar R, Marwaha A, Mazouni FE. Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J Med Chem 2009;52:1864–72
  • Xiang H, Freed JM, Moorthy GS. Preclinical drug metabolism and pharmacokinetic evaluation of GW844520, a novel anti-malarial mitochondrial electron transport inhibitor. J Pharm Sci 2006;95:2657–72
  • Yeates CL, Batchelor JF, Capon EC. Synthesis and structure–activity relationships of 4-pyridones as potential antimalarials. J Med Chem 2008;51:2845–52
  • Bueno JM, Manzano P, Garcia MC. Potent antimalarial 4-pyridones with improved physico-chemical properties. Bioorg Med Chem Lett 2011;21:5214–18
  • Diaz MBJ, Mulet T, Viera S. Improved murine model of malaria using Plasmodium falciparum competent strains and non-myelodepleted NOD-scid IL2Rgnull mice engrafted with human erythrocytes. Antimicrob Agents Chemother 2009;53:4533–6
  • Bueno JM, Herreros E, Barturen IA. Exploration of 4(1H)-pyridones as a novel family of potent antimalarial inhibitors of the plasmodial cytochrome bc1. Future Med Chem 2012;4:2311–23
  • Winter RW, Kelly JX, Smilkstein MJ, et al. Antimalarial quinolones: synthesis, potency and mechanistic studies. Exp Parasitol 2008;118:487–97
  • Nilsen A, Lacrue AN, White KL, et al. Quinolone-3-diarylethers: a new class of antimalarial drug. Sci Transl Med 2013;5:1–25
  • Cowley R, Leung S, Fisher N. The development of quinolone esters as novel antimalarial agents targeting the Plasmodium falciparum bc1 protein complex. Med Chem Comm 2012;3:39–44
  • Biagini GA, Fisher N, Shone AE. Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria. Proc Natl Acad Sci USA 2012;109:8298–303
  • Pidathala C, Amewu R, Pacorel B. Identification, design and biological evaluation of bisaryl quinolones targeting Plasmodium falciparum type II NADH:quinone oxidoreductase (PfNDH2). J Med Chem 2012;55:1831–43
  • O'Neill PM, Amewu RK, Nixon GL, et al. Identification of a 1,2,4,5-tetraoxane antimalarial drug-development candidate (RKA182) with superior properties to the semisynthetic artemisinins. Angew Chem Int Ed 2010;49:5693–7
  • Barker RH, Urgaonkar S, Mazitschek R, et al. Aminoindoles, a novel scaffold with potent activity against Plasmodium falciparum. Antimicrob Agents Chemother 2011;55:2612–22
  • Wu T, Nagle A, Kuhen K, et al. Imidazolopiperazines: hit to lead optimization of new antimalarial agents. J Med Chem 2011;54:5116–30
  • Meister S, Plouffe DM, Kuhen KL, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science 2011;334:1372–7
  • Weaver M, Han X, Francese G, et al. Discovery of novel antimalarials through cell based medicinal chemistry optimization of HTS hits. Med Chem Symp 2011;1–28
  • Caldarelli SA, Fangour S, Sharon W, et al. New bis-thiazolium analogues as potential antimalarial agents: design, synthesis and biological evaluation. Med Chem 2013;56:496–509
  • Roche KL, Johnson J, Ahiboh H, et al. A systematic approach to understand the mechanism of action of the bisthiazolium compound T4 on the human malaria parasite, Plasmodium falciparum. BMC Genomics 2008;9:513
  • Valderramos SG, Fidock DA. Transporters involved in resistance to antimalarial drugs. Trends Pharmacol Sci 2006;27:594–601
  • Ekland EH, Fidock DA. In vitro evaluations of antimalarial drugs and their relevance to clinical outcomes. Int J Parasitol 2008;38:743–7
  • Nkrumah LJ, Riegelhaupt PM, Moura P. Probing the multifactorial Basisium falciparum quinine resistance: evidence for a strain-specific contribution of the sodium proton exchanger PfNHE. Mol Biochem Parasitol 2009;165:122–31
  • Sidhu AB, Valderramos SG, Fidock DA. pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol Microbiol 2005;57:913–26
  • Sidhu AB, Uhlemann AC, Valderramos SG, et al. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis 2006;194:528–35
  • Sidhu AB, Pinard DV, Fidock DA. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 2002;298:210–13
  • Eastman RT, Fidock DA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol 2009;7:864–74
  • Dondorp AM, Nosten F, Yi P. Artemisinin resistance in Plasmodium falciparum Malaria. N Engl J Med 2009;361:455–67
  • Lim P, Alker AP, Khim N. Pfmdr1 copy number and arteminisin derivatives combination therapy failure in falciparum malaria in Cambodia. Malaria J 2009;8:11. doi: 10.1186/1475-2875-8-11
  • White NJ. Qinghaosu (Artemisinin): the price of success. Science 2008;320:330–4
  • Nagelschmitz J, Voith B, Wensing G, et al. First assessment in humans of the safety, tolerability, pharmacokinetics, and ex vivo pharmacodynamic antimalarial activity of the new artemisinin derivative artemisone. Antimicrob Agents Chemother 2008;52:3085–91
  • Waknine-Grinberg JH, Hunt N, Marciano AB, et al. Artemisone effective against murine cerebral malaria. Malaria J 2010;9:227. doi: 10.1186/1475-2875-9-227
  • Wright CW, Kyereme JA, Breen AG, et al. Synthesis and evaluation of cryptolepine analogues for their potential as new antimalarial agents. J Med Chem 2001;44:3187–94
  • Onyeibor O, Croft SL, Dodson HI, et al. Synthesis of some cryptolepine analogues, assessment of their antimalarial and cytotoxic activities and consideration of their antimalarial mode of action. J Med Chem 2005;48:2701–9
  • Phillipson JD, Wright CW, Kirby GC, et al. Phytochemistry of some plants used in traditional medicine for the treatment of protozoal diseases. Oxford: Oxford Science Publications; 1995:95–135
  • Vennerstrom JL, Barnes SA, Brun R, et al. Identification of an antimalarial synthetic trioxolane drug development. Nature 2004;430:900–4
  • Polonsky J, Fortschr. Quassinoid bitter principles. Chem Org Naturst 1973;30:101–50
  • Polonsky J, Fortschr. Antimalarial activity of quassinoids against chloroquine resistant Plasmodium falciparum in vitro. Chem Org Naturst 1985;47:221
  • Ang HH, Chan KL, Mak JW. In vitro antimalarial activity of quassinoids from Eurycoma longifolia against Malaysian chloroquine-resistant Plasmodium falciparum isolates. Planta Med 1995;61:177–8
  • O”Neill MJ, Bray DH, Boaedman P, et al. Plants as sources of antimalarial activities of some quassinoids. Antimicrob Agents Chemother 1986;30:101–4
  • Kirby GC, O'Neill MJ, Phillipson JD, et al. In vitro studies on the mode of action of quassinoids with activity against chloroquine-resistant Plasmodium falciparum. Biochem Pharmacol 1989;38:4367–74
  • Anderson MM, O'Neill MJ, Phillipson JD, et al. In vitro cytotoxicity of a series of quassinoids from Brucea javanica, fruits against KB cells. Planta Med 1991;57:62–4
  • Pires CAS. Investigation of antiplasmodial compounds from various plant extracts, These de doctorat. Univ Geneve no Sc 2009;4129:1–226
  • Willcox ML, Graz B, Falquet J, et al. A reverse pharmacology approach for developing an anti-malarial phytomedicine. Malaria J 2011;10:8. doi: 10.1186/1475-2875-10-S1-S8
  • Mesia K, Tona L, Mampunza MM, et al. Antimalarial efficacy of a quantified extract of Nauclea pobeguinii stem bark in human adult volunteers with diagnosed uncomplicated falciparum malaria: Part 1: a clinical phase II A trial. Planta Med 2012;78:211–18
  • Charman SA, Barnes SA, Bathurst IC, et al. Vennerstrom, synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. PNAS 2011;108:4400–5
  • Valecha N, Martensson S, Looareesuwan. Arterolane, a new synthetic trioxolane for treatment of uncomplicated Plasmodium falciparum malaria: a phase II, multicenter, randomized, dose-finding clinical trial. Clin Infect Dis 2010;51:684–91
  • Kumar S, Singh RK, Sharma R, et al. Design, synthesis and evaluation of antimalarial potential of polyphosphazene linked combination therapy of primaquine and dihydroartemisinin. Eur J Pharm Sci 2015;66:123–37

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.