1,118
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Bicyclic γ-amino acids as inhibitors of γ-aminobutyrate aminotransferase

, , , , , , , & show all
Pages 295-301 | Received 09 Jan 2015, Accepted 13 Feb 2015, Published online: 25 Mar 2015

References

  • Schousboe A, Waagepetersen HS. GABA: homeostatic and pharmacological aspects. Prog Brain Res 2007;160:9–19
  • Meldrum BS. GABAergic mechanisms in the pathogenesis and treatment of epilepsy. Br J Clin Pharmacol 1989;27:3S–11
  • Fatemi SH. The hyperglutamatergic hypothesis of autism. Prog Neuro-Psychopharmacol Biol Psychiatry 2008;32:911 ( author reply 912–13).
  • Brauns S, Gollub RL, Walton E, et al. Genetic variation in GAD1 is associated with cortical thickness in the parahippocampal gyrus. J Psychiatr Res 2013;47:872–9
  • Domschke K, Tidow N, Schrempf M, et al. Epigenetic signature of panic disorder: a role of glutamate decarboxylase 1 (GAD1) DNA hypomethylation? Prog Neuro-Psychopharmacol Biol Psychiatry 2013;46:189–96
  • McCarson KE, Enna SJ. GABA Pharmacology: the search for analgesics. Neurochem Res 2014;39:1948–63
  • Owens DF, Kriegstein AR. Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 2002;3:715–27
  • Ge S, Goh EL, Sailor KA, et al. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 2006;439:589–93
  • D'Hulst C, Atack JR, Kooy RF. The complexity of the GABAA receptor shapes unique pharmacological profiles. Drug Discov Today 2009;14:866–75
  • Blein S, Hawrot E, Barlow P. The metabotropic GABA receptor: molecular insights and their functional consequences. Cell Mol Life Sci 2000;7:635–50
  • Borden LA. GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 1996;29:335–56
  • Rowley NM, Madsen KK, Schousboe A, White HS. Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int 2012;61:546–58
  • Angehagen M, Ben-Menachem E, Ronnback L, Hansson E. Novel mechanisms of action of three antiepileptic drugs, vigabatrin, tiagabine, and topiramate. Neurochem Res 2003;28:333–40
  • Mattson RH, Meldrum BS. Vigabatrin. Mechanisms of action. In: Levy RH, ed. Antiepileptic drugs. Raven: New York; 1995:903–13
  • Pan Y, Qiu J, Silverman RB. Design, synthesis, and biological activity of a difluoro-substituted, conformationally rigid vigabatrin analogue as a potent gamma-aminobutyric acid aminotransferase inhibitor. J Med Chem 2003;46:5292–3
  • Storici P, De Biase D, Bossa F, et al. Structures of gamma-aminobutyric acid (GABA) aminotransferase, a pyridoxal 5′-phosphate, and [2Fe-2S] cluster-containing enzyme, complexed with gamma-ethynyl-GABA and with the antiepilepsy drug vigabatrin. J Biol Chem 2004;279:363–73
  • De Biase D, Barra D, Bossa F, et al. Chemistry of the inactivation of 4-aminobutyrate aminotransferase by the antiepileptic drug vigabatrin. J Biol Chem 1991;266:20056–61
  • Choi S, Storici P, Schirmer T, Silverman RB. Design of a conformationally restricted analogue of the antiepilepsy drug Vigabatrin that directs its mechanism of inactivation of gamma-aminobutyric acid aminotransferase. J Am Chem Soc 2002;124:1620–4
  • Pan Y, Calvert K, Silverman RB. Conformationally-restricted vigabatrin analogues as irreversible and reversible inhibitors of γ-aminobutyric acid aminotransferase. Bioorg Med Chem 2004;12:5719–25
  • (a) Ettari R, Tamborini L, Angelo IC, et al. Development of rhodesain inhibitors with a 3-bromoisoxazoline warhead. ChemMedChem 2013;8:2070–6. (b) Ettari R, Pinto A, Tamborini L, et al. Synthesis and biological evaluation of Papain-family cathepsin L-like cysteine protease inhibitors containing a 1,4-benzodiazepine scaffold as antiprotozoal agents. ChemMedChem 2014;9:1817–25
  • (a) Tamborini L, Pinto A, Smith TK, et al. Synthesis and biological evaluation of CTP synthetase inhibitors as potential agents for the treatment of African trypanosomiasis. ChemMedChem 2012;7:1623–34. (b) Conti P, Pinto A, Wong PE, et al. Synthesis and in vitro/in vivo evaluation of the antitrypanosomal activity of 3-bromoacivicin, a potent CTP synthetase inhibitor. ChemMedChem 2011;6:329–33
  • Bruno S, Pinto A, Paredi G, et al. Discovery of covalent inhibitors of glyceraldehyde-3-phosphate dehydrogenase, a target for the treatment of protozoal infections. J Med Chem 2014;57:7465–71
  • Girardin M, Alsabeh PG, Lauzon S, et al. Synthesis of 3-aminoisoxazoles via the addition-elimination of amines on 3-bromoisoxazolines. Org Lett 2009;11:1159–62
  • Lippert B, Metcalf BW, Jung MJ, Casara P. 4-Amino-hex-5-enoic acid, a selective catalytic inhibitor of 4-aminobutyric-acid aminotransferase in mammalian brain. FEBS J 1977;74:441–5
  • Korb O, Stutzle T, Exner TE. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inf Model 2009;49:84–96
  • Glide, version 5.5. New York, NY: Schrödinger, Inc.; 2009
  • Prime, version 2.1. New York, NY: Schrödinger, LLC; 2009
  • (a) Pinto A, Conti P, De Amici M, et al. Synthesis and pharmacological characterization at glutamate receptors of the four enantiopure isomers of tricholomic acid. J Med Chem 2008;51:2311–15. (b) Pinto A, Conti P, De Amici M, et al. Synthesis of enantiomerically pure HIP-A and HIP-B and investigation of their activity as inhibitors of excitatory amino acid transporters. Tetrahedron: Asymmetry 2008;19:867–75. (c) Pinto A, Conti P, Tamborini L, De Micheli C. A novel simplified synthesis of acivicin. Tetrahedon: Asymmetry 2009;20:508–11
  • Katagiri N, Yamatoya Y, Ishikura M. The first synthesis of a 2′,3′-methano carbocyclic nucleoside. Tetrahedron Lett 1999;40:9069–72
  • (a) Memeo MG, Bovio B, Quadrelli P. RuO 4-catalyzed oxidation reactions of isoxazolino-2-azanorbornane derivatives: a short-cut synthesis of tricyclic lactams and peptidomimetic γ-aminoacids. Tetrahedron 2011;67:1907–14. (b) Memeo MG, Mantione D, Bovio B, Quadrelli P. RuO4-catalyzed oxidation reactions of N-alkylisoxazolino-2-azanorbornane derivatives: an expeditious route to tricyclic γ-lactams. Synthesis 2011;13:2165–74
  • Quadrelli P, Mella M, Paganoni P, Caramella P. Cycloadditions of nitrile oxides to the highly reactive N-acyl-2-oxa-3-azanorborn-5-enes afford versatile cycloadducts and a convenient entry to highly functionalized derivatives. Eur J Org Chem 2000;14:2163–620
  • De Biase D, Barra D, Simmaco M, et al. Primary structure and tissue distribution of human 4-aminobutyrate aminotransferase. FEBS J 1995;227:476–80
  • Storici P, Capitani G, De Biase D, et al. Crystal structure of GABA-aminotransferase, a target for antiepileptic drug therapy. Biochemistry 1999;38:8628–34
  • Kitz R, Wilson IB. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J Biol Chem 1962;237:3245–9
  • Yuan H, Silverman RB. Structural modifications of (1S,3S)-3-amino-4-difluoromethylenecyclopentanecarboxylic acid, a potent irreversible inhibitor of GABA aminotransferase. Bioorg Med Chem Lett 2007;17:1651–4
  • Burgi HB, Dunitz JD. From crystal statics to chemical dynamics. Acc Chem Res 1983;16:153–61

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.