1,646
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Targeting clinically-relevant metallo-β-lactamases: from high-throughput docking to broad-spectrum inhibitors

, , , , , , , , & show all
Pages 98-109 | Received 08 Feb 2016, Accepted 23 Mar 2016, Published online: 28 Apr 2016

References

  • Gupta V. Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species. Expert Opin Investig Drugs 2008;17:131–43
  • King AM, Reid-Yu SA, Wang W, et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 2014;510:503–6
  • Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 2009;48:1–12
  • Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 2013;11:297–308
  • Wright GD. Molecular mechanisms of antibiotic resistance. Chem Commun (Camb) 2011;47:4055–61
  • Johnson JW, Gretes M, Goodfellow VJ, et al. Cyclobutanone analogues of beta-lactams revisited: insights into conformational requirements for inhibition of serine- and metallo-beta-lactamases. J Am Chem Soc 2010;132:2558–60
  • Payne DJ. Microbiology. Desperately seeking new antibiotics. Science 2008;321:1644–5
  • Bebrone C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 2007;74:1686–701
  • Bebrone C, Lassaux P, Vercheval L, et al. Current challenges in antimicrobial chemotherapy: focus on ss-lactamase inhibition. Drugs 2010;70:651–79
  • von Nussbaum F, Schiffer G. Aspergillomarasmine A, an inhibitor of bacterial metallo-β-lactamases conferring blaNDM and blaVIM resistance. Angew Chem Int Ed Engl 2014;53:11696–8
  • Crowder MW, Spencer J, Vila AJ. Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res 2006;39:721–8
  • Poirel L, Lagrutta E, Taylor P, et al. Emergence of metallo-β-lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia. Antimicrob Agents Chemother 2010;54:4914–16
  • Li Y, Zhang X, Wang C, et al. Characterization by phenotypic and genotypic methods of metallo-β-lactamase-producing Pseudomonas aeruginosa isolated from patients with cystic fibrosis. Mol Med Rep 2015;11:494–8
  • Zhang YL, Yang KW, Zhou YJ, et al. Diaryl-substituted azolylthioacetamides: inhibitor discovery of New Delhi metallo-beta-lactamase-1 (NDM-1). ChemMedChem 2014;9:2445–8
  • Gemma S, Giovani S, Brindisi M, et al. Quinolylhydrazones as novel inhibitors of Plasmodium falciparum serine protease PfSUB1. Bioorg Med Chem Lett 2012;22:5317–21
  • Gemma S, Kukreja G, Tripaldi P, et al. Microwave-assisted synthesis of 4-quinolylhydrazines followed by nickel boride reduction: a convenient approach to 4-aminoquinolines and derivatives. Tetrahedron Lett 2008;49:2074–7
  • Gemma S, Savini L, Altarelli M, et al. Development of antitubercular compounds based on a 4-quinolylhydrazone scaffold. Further structure-activity relationship studies. Bioorg Med Chem 2009;17:6063–72
  • Fattorusso C, Campiani G, Kukreja G, et al. Design, synthesis, and structure-activity relationship studies of 4-quinolinyl- and 9-acrydinylhydrazones as potent antimalarial agents. J Med Chem 2008;51:1333–43
  • Cuberes Altisen R, Holenz J, Colombo Piñol M, Port De Pol M. Derivatives of pyrazoline, procedure for obtaining them and use thereof as therapeutic agents. Int. Appl. 2006011005. 02 Feb 2006
  • Weber V, Rubat C, Duroux E, et al. New 3- and 4-hydroxyfuranones as anti-oxidants and anti-inflammatory agents. Bioorg Med Chem 2005;13:4552–64
  • Verheijen JC, Yu K, Toral-Barza L, et al. Discovery of 2-arylthieno[3,2-d]pyrimidines containing 8-oxa-3-azabi-cyclo[3.2.1]octane in the 4-position as potent inhibitors of mTOR with selectivity over PI3K. Bioorg Med Chem Lett 2010;20:375–9
  • Schoenfeld RC, Bourdet DL, Brameld KA, et al. Discovery of a novel series of potent non-nucleoside inhibitors of hepatitis C virus NS5B. J Med Chem 2013;56:8163–82
  • Greenfield A, Grosanu C. Convenient synthesis of primary sulfonamides. Tetrahedron Lett 2008;49:6300–3
  • Englert HC, Gerlach U, Goegelein H, et al. Cardioselective K(ATP) channel blockers derived from a new series of m-anisamidoethylbenzenesulfonylthioureas. J Med Chem 2001;44:1085–98
  • Yamaguchi Y, Jin W, Matsunaga K, et al. Crystallographic investigation of the inhibition mode of a VIM-2 metallo-beta-lactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor. J Med Chem 2007;50:6647–53
  • Garcia-Saez I, Docquier JD, Rossolini GM, Dideberg O. The three-dimensional structure of VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa in its reduced and oxidised form. J Mol Biol 2008;375:604–11
  • Zhang H, Hao Q. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J 2011;25:2574–82
  • Concha NO, Janson CA, Rowling P, et al. Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochemistry 2000;39:4288–98
  • Jorgensen WL, Maxwell DS, TiradoRives J. Development and testing of the OPLS all atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996;118:11225–36
  • Still WC, Tempczyk A, Hawley RC, Hendrickson T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 1990;112:6127–9
  • Jones G, Willett P, Glen RC, et al. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997;267:727–48
  • Brindisi M, Butini S, Franceschini S, et al. Targeting dopamine D and serotonin 5-HT and 5-HT receptors for developing effective antipsychotics: synthesis, biological characterization, and behavioral studies. J Med Chem 2014;26:9575–97
  • Brogi S, Butini S, Maramai S, et al. Disease-modifying anti-Alzheimer's drugs: inhibitors of human cholinesterases interfering with β-amyloid aggregation. CNS Neurosci Ther 2014;20:624–32
  • Giovani S, Penzo M, Brogi S, et al. Rational design of the first difluorostatone-based PfSUB1 inhibitors. Bioorg Med Chem Lett 2014;24:3582–6
  • Laraki N, Franceschini N, Rossolini GM, et al. Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-beta-lactamase IMP-1 produced by Escherichia coli. Antimicrob Agents Chemother 1999;43:902–6
  • Docquier JD, Riccio ML, Mugnaioli C, et al. IMP-12, a new plasmid-encoded metallo-beta-lactamase from a Pseudomonas putida clinical isolate. Antimicrob Agents Chemother 2003;47:1522–8
  • Borgianni L, Prandi S, Salden L, et al. Genetic context and biochemical characterization of the IMP-18 metallo-beta-lactamase identified in a Pseudomonas aeruginosa isolate from the United States. Antimicrob Agents Chemother 2011;55:140–5
  • Docquier JD, Lamotte-Brasseur J, Galleni M, et al. On functional and structural heterogeneity of VIM-type metallo-beta-lactamases. J Antimicrob Chemother 2003;51:257–66
  • Borgianni L, Vandenameele J, Matagne A, et al. Mutational analysis of VIM-2 reveals an essential determinant for metallo-beta-lactamase stability and folding. Antimicrob Agents Chemother 2010;54:3197–204
  • Clinical Laboratory Standard Institute. Performance standards for antimicrobial disk susceptibility tests; approved standard—Twelfth Edition (M02-A12). Wayne, PA, USA; 2015
  • Kumar D, Kumar R, Chakraborti AK. Tetrafluoroboric acid adsorbed on silica gel as a reusable heterogeneous dual-purpose catalyst for conversion of aldehydes/ketones into acetals/ketals and back again. Synthesis 2008;1249–56
  • Brindisi M, Brogi S, Relitti N, et al. Structure-based discovery of the first non-covalent inhibitors of Leishmania major tryparedoxin peroxidase by high throughput docking. Scientific Rep 2015;5
  • Jones G, Willett P, Glen RC. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 1995;245:43–53
  • Garau G, Garcia-Saez I, Bebrone C, et al. Update of the standard numbering scheme for class B beta-lactamases. Antimicrob Agents Chemother 2004;48:2347–9
  • Denny WA. Acridine derivatives as chemotherapeutic agents. Curr Med Chem 2002;9:1655–65
  • Barros FW, Silva TG, da Rocha Pitta MG, et al. Synthesis and cytotoxic activity of new acridine-thiazolidine derivatives. Bioorg Med Chem 2012;20:3533–9
  • Butini S, Brindisi M, Brogi S, et al. Multifunctional cholinesterase and amyloid beta fibrillization modulators. Synthesis and biological investigation. ACS Med Chem Lett 2013;4:1178–82
  • Olszewska P, Mikiciuk-Olasik E, Blaszczak-Swiatkiewicz K, et al. Novel tetrahydroacridine derivatives inhibit human lung adenocarcinoma cell growth by inducing G1 phase cell cycle arrest and apoptosis. Biomed Pharmacother 2014;68:959–67

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.