1,796
Views
62
CrossRef citations to date
0
Altmetric
Original Article

The transcriptome of cervical ripening in human pregnancy before the onset of labor at term: Identification of novel molecular functions involved in this process

, , , , , , , , , , , , & show all
Pages 1183-1193 | Received 17 Aug 2009, Accepted 14 Sep 2009, Published online: 03 Nov 2009

References

  • Romero R, Mazor M, Munoz H, Gomez R, Galasso M, Sherer DM. The preterm labor syndrome. Ann NY Acad Sci 1994;734:414–429.
  • Junqueira LC, Zugaib M, Montes GS, Toledo OM, Krisztan RM, Shigihara KM. Morphologic and histochemical evidence for the occurrence of collagenolysis and for the role of neutrophilic polymorphonuclear leukocytes during cervical dilation. Am J Obstet Gynecol 1980;138:273–281.
  • Liggins G. Cervical ripening as an inflammatory reaction. In: Ellwood D, Anderson A, editors. The Cervix in pregnancy and labour: clinical and biochemical investigations. Edinburgh: Churchill Livingstone; 1981;1–9.
  • Osmers RG, Blaser J, Kuhn W, Tschesche H. Interleukin-8 synthesis and the onset of labor. Obstet Gynecol 1995;86:223–229.
  • Hwang JJ, Macinga D, Rorke EA. Relaxin modulates human cervical stromal cell activity. J Clin Endocrinol Metab 1996;81:3379–3384.
  • Sennstrom MK, Brauner A, Lu Y, Granstrom LM, Malmstrom AL, Ekman GE. Interleukin-8 is a mediator of the final cervical ripening in humans. Eur J Obstet Gynecol Reprod Biol 1997;74:89–92.
  • Sennstrom MB, Ekman G, Westergren-Thorsson G, Malmstrom A, Bystrom B, Endresen U, Mlambo N, Norman M, Stabi B, Brauner A. Human cervical ripening, an inflammatory process mediated by cytokines. Mol Hum Reprod 2000;6:375–381.
  • Young A, Thomson AJ, Ledingham M, Jordan F, Greer IA, Norman JE. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol Reprod 2002;66:445–449.
  • Osman I, Young A, Ledingham MA, Thomson AJ, Jordan F, Greer IA, Norman JE. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod 2003;9:41–45.
  • Sakamoto Y, Moran P, Searle RF, Bulmer JN, Robson SC. Interleukin-8 is involved in cervical dilatation but not in prelabour cervical ripening. Clin Exp Immunol 2004;138:151–157.
  • Stjernholm-Vladic Y, Stygar D, Mansson C, Masironi B, Akerberg S, Wang H, Ekman-Ordeberg G, Sahlin L. Factors involved in the inflammatory events of cervical ripening in humans. Reprod Biol Endocrinol 2004;2:74.
  • Huber A, Hudelist G, Czerwenka K, Husslein P, Kubista E, Singer CF. Gene expression profiling of cervical tissue during physiological cervical effacement. Obstet Gynecol 2005;105:91–98.
  • Tornblom SA, Klimaviciute A, Bystrom B, Chromek M, Brauner A, Ekman-Ordeberg G. Non-infected preterm parturition is related to increased concentrations of IL-6, IL-8 and MCP-1 in human cervix. Reprod Biol Endocrinol 2005;3:39.
  • Word RA, Landrum CP, Timmons BC, Young SG, Mahendroo MS. Transgene insertion on mouse chromosome 6 impairs function of the uterine cervix and causes failure of parturition. Biol Reprod 2005;73:1046–1056.
  • Hassan SS, Romero R, Haddad R, Hendler I, Khalek N, Tromp G, Diamond MP, Sorokin Y, Malone J Jr. The transcriptome of the uterine cervix before and after spontaneous term parturition. Am J Obstet Gynecol 2006;195:778–786.
  • Hassan SS, Romero R, Tarca AL, Draghici S, Pineles B, Bugrim A, Khalek N, Camacho N, Mittal P, Yoon BH, et al Signature pathways identified from gene expression profiles in the human uterine cervix before and after spontaneous term parturition. Am J Obstet Gynecol 2007;197:250e1–250e7.
  • Timmons BC, Fairhurst AM, Mahendroo MS. Temporal changes in myeloid cells in the cervix during pregnancy and parturition. J Immunol 2009;182:2700–2707.
  • Danforth DN, Buckingham JC, Roddick JW Jr. Connective tissue changes incident to cervical effacement. Am J Obstet Gynecol 1960;80:939–945.
  • Mahendroo MS, Cala KM, Russell DW. 5 alpha-reduced androgens play a key role in murine parturition. Mol Endocrinol 1996;10:380–392.
  • Mahendroo MS, Porter A, Russell DW, Word RA. The parturition defect in steroid 5alpha-reductase type 1 knockout mice is due to impaired cervical ripening. Mol Endocrinol 1999;13:981–992.
  • Xu H, Gonzalez JM, Ofori E, Elovitz MA. Preventing cervical ripening: the primary mechanism by which progestational agents prevent preterm birth? Am J Obstet Gynecol 2008;198:314e1–314e8.
  • Yellon SM, Ebner CA, Elovitz MA. Medroxyprogesterone acetate modulates remodeling, immune cell census, and nerve fibers in the cervix of a mouse model for inflammation-induced preterm birth. Reprod Sci 2009;16:257–264.
  • Ekman G, Uldbjerg N, Malmstrom A, Ulmsten U. Increased postpartum collagenolytic activity in cervical connective tissue from women treated with prostaglandin E2. Gynecol Obstet Invest 1983;16:292–298.
  • Ekman G, Uldbjerg N, Wingerup L, Ulmsten U. Intracervical instillation of PGE2-gel in patients with missed abortion or intrauterine fetal death. Arch Gynecol 1983;233:241–245.
  • Tornblom SA, Maul H, Klimaviciute A, Garfield RE, Bystrom B, Malmstrom A, Ekman-Ordeberg G. mRNA expression and localization of bNOS, eNOS and iNOS in human cervix at preterm and term labour. Reprod Biol Endocrinol 2005;3:33.
  • Danforth DN. The fibrous nature of the human cervix, and its relation to the isthmic segment in gravid and nongravid uteri. Am J Obstet Gynecol 1947;53:541–557.
  • Maillot KV, Zimmermann BK. The solubility of collagen of the uterine cervix during pregnancy and labour. Arch Gynakol 1976;220:275–280.
  • Leppert PC, Keller S, Cerreta J, Mandl I. Conclusive evidence for the presence of elastin in human and monkey cervix. Am J Obstet Gynecol 1982;142:179–182.
  • Leppert PC, Keller S, Cerreta J, Hosannah Y, Mandl I. The content of elastin in the uterine cervix. Arch Biochem Biophys 1983;222:53–58.
  • Uldbjerg N, Carlstedt I, Ekman G, Malmstrom A, Ulmsten U, Wingerup L. Dermatan sulphate and mucin glycopeptides from the human uterine cervix. Gynecol Obstet Invest 1983;16:199–209.
  • Uldbjerg N, Ekman G, Malmstrom A, Olsson K, Ulmsten U. Ripening of the human uterine cervix related to changes in collagen, glycosaminoglycans, and collagenolytic activity. Am J Obstet Gynecol 1983;147:662–666.
  • Timpl R, Fujiwara S, Dziadek M, Aumailley M, Weber S, Engel J. Laminin, proteoglycan, nidogen and collagen IV: structural models and molecular interactions. Ciba Found Symp 1984;108:25–43.
  • Leppert PC, Yu SY. Apoptosis in the cervix of pregnant rats in association with cervical softening. Gynecol Obstet Invest 1994;37:150–154.
  • Rechberger T, Abramson SR, Woessner JF Jr. Onapristone and prostaglandin E2 induction of delivery in the rat in late pregnancy: a model for the analysis of cervical softening. Am J Obstet Gynecol 1996;175:719–723.
  • Westergren-Thorsson G, Norman M, Bjornsson S, Endresen U, Stjernholm Y, Ekman G, Malmstrom A. Differential expressions of mRNA for proteoglycans, collagens and transforming growth factor-beta in the human cervix during pregnancy and involution. Biochim Biophys Acta 1998;1406:203–213.
  • Timmons BC, Mahendroo M. Processes regulating cervical ripening differ from cervical dilation and postpartum repair: insights from gene expression studies. Reprod Sci 2007;14:53–62.
  • Uldbjerg N, Ekman G, Herltoft P, Malmstrom A, Ulmsten U, Wingerup L. Human cervical connective tissue and its reaction to prostaglandin E2. Acta Obstet Gynecol Scand Suppl 1983;113:163–166.
  • Cabrol D, Dallot E, Cedard L, Sureau C. Pregnancy-related changes in the distribution of glycosaminoglycans in the cervix and corpus of the human uterus. Eur J Obstet Gynecol Reprod Biol 1985;20:289–295.
  • Osmers R, Rath W, Pflanz MA, Kuhn W, Stuhlsatz HW, Szeverenyi M. Glycosaminoglycans in cervical connective tissue during pregnancy and parturition. Obstet Gynecol 1993;81:88–92.
  • Akerud A, Dubicke A, Sennstrom M, Ekman-Ordeberg G, Malmstrom A. Differences in heparan sulfate production in cervical fibroblast cultures from women undergoing term and preterm delivery. Acta Obstet Gynecol Scand 2008;87:1220–1228.
  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4:249–264.
  • Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, Kim CJ, Kusanovic JP, Romero R. A novel signaling pathway impact analysis. Bioinformatics 2009;25:75–82.
  • Draghici S, Khatri P, Tarca AL, et al A systems biology approach for pathway level analysis. Genome Res 2007;17:1537–1545.
  • Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics 2007;23:257–258.
  • Draghici S, Khatri P, Martins RP, Ostermeier GC, Krawetz SA. Global functional profiling of gene expression. Genomics 2003 Feb;81(2):98–104.
  • Leppert PC, Cerreta JM, Mandl I. Orientation of elastic fibers in the human cervix. Am J Obstet Gynecol 1986;155:219–224.
  • Ito A, Leppert PC, Mori Y. Human recombinant interleukin-1 alpha increases elastase-like enzyme in human uterine cervical fibroblasts. Gynecol Obstet Invest 1990;30:239–241.
  • Tornblom SA, Patel FA, Bystrom B, Giannoulias D, Malmstrom A, Sennstrom M, Lye SJ, Challis JR, Ekman G. 15-hydroxyprostaglandin dehydrogenase and cyclooxygenase 2 messenger ribonucleic acid expression and immunohistochemical localization in human cervical tissue during term and preterm labor. J Clin Endocrinol Metab 2004;89:2909–2915.
  • Leppert PC. Proliferation and apoptosis of fibroblasts and smooth muscle cells in rat uterine cervix throughout gestation and the effect of the antiprogesterone onapristone. Am J Obstet Gynecol 1998;178:713–725.
  • Lyons CA, Beharry KD, Nishihara KC, Akmal Y, Ren ZY, Chang E, Nageotte MP. Regulation of matrix metalloproteinases (type IV collagenases) and their inhibitors in the virgin, timed pregnant and postpartum rat uterus and cervix by prostaglandin E(2)-cyclic adenosine monophosphate. Am J Obstet Gynecol 2002;187:202–208.
  • Elovitz MA, Mrinalini C. Can medroxyprogesterone acetate alter Toll-like receptor expression in a mouse model of intrauterine inflammation? Am J Obstet Gynecol 2005;193:1149–1155.
  • Elovitz MA, Gonzalez J. Medroxyprogesterone acetate modulates the immune response in the uterus, cervix and placenta in a mouse model of preterm birth. J Matern Fetal Neonatal Med 2008;21:223–230.
  • Simon C, Einspanier A. The hormonal induction of cervical remodeling in the common marmoset monkey (Callithrix jacchus). Reproduction 2009;137:517–525.
  • Dailey T, Ji H, Long V, Chien EK. The role of transforming growth factor beta in cervical remodeling within the rat cervix. Am J Obstet Gynecol 2009 Sep;201(3):322. e1–6.
  • Leppert PC. Anatomy and physiology of cervical ripening. Clin Obstet Gynecol 1995;38:267–279.
  • Uldbjerg N, Ulmsten U, Ekman G. The ripening of the human uterine cervix in terms of connective tissue biochemistry. Clin Obstet Gynecol 1983;26:14–26.
  • Uldbjerg N, Malmstrom A, Ekman G, Sheehan J, Ulmsten U, Wingerup L. Isolation and characterization of dermatan sulphate proteoglycan from human uterine cervix. Biochem J 1983;209:497–503.
  • Norman M, Ekman G, Malmstrom A. Prostaglandin E2-induced ripening of the human cervix involves changes in proteoglycan metabolism. Obstet Gynecol 1993;82:1013–1020.
  • Roddick JW Jr, Buckingham JC, Danforth DN. The muscular cervix – a cause of incompetency in pregnancy. Obstet Gynecol 1961;17:562–565.
  • Petersen LK, Uldbjerg N. Cervical collagen in non-pregnant women with previous cervical incompetence. Eur J Obstet Gynecol Reprod Biol 1996;67:41–45.
  • Kefalides NA, Alper R, Clark CC. Biochemistry and metabolism of basement membranes. Int Rev Cytol 1979;61:167–228.
  • Weber S, Engel J, Wiedemann H, Glanville RW, Timpl R. Subunit structure and assembly of the globular domain of basement-membrane collagen type IV. Eur J Biochem 1984;139:401–410.
  • Griffin CA, Emanuel BS, Hansen JR, Cavenee WK, Myers JC. Human collagen genes encoding basement membrane alpha 1 (IV) and alpha 2 (IV) chains map to the distal long arm of chromosome 13. Proc Natl Acad Sci USA 1987;84:512–516.
  • Wenstrup RJ, Florer JB, Brunskill EW, Bell SM, Chervoneva I, Birk DE. Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem 2004;279:53331–53337.
  • Kuo HJ, Maslen CL, Keene DR, Glanville RW. Type VI collagen anchors endothelial basement membranes by interacting with type IV collagen. J Biol Chem 1997;272:26522–26529.
  • Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 2008;72:455–482.
  • Ekman-Ordeberg G, Hellgren M, Akerud A, Andersson E, Dubicke A, Sennstrom M, Bystrom B, Tzortzatos G, Gomez MF, Edlund M, et al Low molecular weight heparin stimulates myometrial contractility and cervical remodeling in vitro. Acta Obstet Gynecol Scand 2009;88:984–989.
  • Massova I, Kotra LP, Fridman R, Mobashery S. Matrix metalloproteinases: structures, evolution, and diversification. Faseb J 1998;12:1075–1095.
  • Watari M, Watari H, DiSanto ME, Chacko S, Shi GP, Strauss JF III. Pro-inflammatory cytokines induce expression of matrix-metabolizing enzymes in human cervical smooth muscle cells. Am J Pathol 1999;154:1755–1762.
  • Kielty CM, Wess TJ, Haston L, Ashworth JL, Sherratt MJ, Shuttleworth CA. Fibrillin-rich microfibrils: elastic biopolymers of the extracellular matrix. J Muscle Res Cell Motil 2002;23:581–596.
  • Imada K, Sato T, Hashizume K, Tanimoto A, Sasaguri Y, Ito A. An antiprogesterone, onapristone, enhances the gene expression of promatrix metalloproteinase 3/prostromelysin-1 in the uterine cervix of pregnant rabbit. Biol Pharm Bull 2002;25:1223–1227.
  • Del Mar Barbacid M, Fernandez-Resa P, Buesa JM, Marquez G, Aracil M, Quesadaand AR, Mira E. Expression and purification of human stromelysin 1 and 3 from baculovirus-infected insect cells. Protein Expr Purif 1998;13:243–250.
  • Bini A, Wu D, Schnuer J, Kudryk BJ. Characterization of stromelysin 1 (MMP-3), matrilysin (MMP-7), and membrane type 1 matrix metalloproteinase (MT1-MMP) derived fibrin(ogen) fragments D-dimer and D-like monomer: NH2-terminal sequences of late-stage digest fragments. Biochemistry 1999;38:13928–13936.
  • Noe V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Steelant W, Bruyeel E, Matrisian LM, Mareel M. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 2001;114:111–118.
  • Hazan RB, Norton L. The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton. J Biol Chem 1998;273:9078–9084.
  • Lu Q, Paredes M, Medina M, et al delta-catenin, an adhesive junction-associated protein which promotes cell scattering. J Cell Biol 1999;144:519–532.
  • Deguchi M, Iizuka T, Hata Y, Nishimura W, Hirao K, Yao I, Kawabe H, Takai Y. PAPIN. A novel multiple PSD-95/Dlg-A/ZO-1 protein interacting with neural plakophilin-related armadillo repeat protein/delta-catenin and p0071. J Biol Chem 2000;275:29875–29880.
  • Seals DF, Courtneidge SA. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 2003;17:7–30.
  • Porter S, Clark IM, Kevorkian L, Edwards DR. The ADAMTS metalloproteinases. Biochem J 2005;386:15–27.
  • Collins-Racie LA, Flannery CR, Zeng W, Corcoran C, Annis-Freeman B, Agostino MJ, Arai M, DiBlasio-Smith E, Dorner AJ, Georgiadis KE, et al ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage. Matrix Biol 2004;23:219–230.
  • Rodriguez-Manzaneque JC, Westling J, Thai SN, Luque A, Knauper V, Murphy G, Sandy JD, Iruella-Arispe ML. ADAMTS1 cleaves aggrecan at multiple sites and is differentially inhibited by metalloproteinase inhibitors. Biochem Biophys Res Commun 2002;293:501–508.
  • Westling J, Gottschall PE, Thompson VP, Cockburn A, Perides G, Zimmermann DR, Sandy JD. ADAMTS4 (aggrecanase-1) cleaves human brain versican V2 at Glu405-Gln406 to generate glial hyaluronate binding protein. Biochem J 2004;377:787–795.
  • Ruscheinsky M, De la Motte C, Mahendroo M. Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN. Hyaluronan and its binding proteins during cervical ripening and parturition: dynamic changes in size, distribution and temporal sequence. Matrix Biol 2008;27:487–497.
  • Timmons BC, Mahendroo MS. Timing of neutrophil activation and expression of proinflammatory markers do not support a role for neutrophils in cervical ripening in the mouse. Biol Reprod 2006;74:236–245.
  • Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 2001;105:851–862.
  • Wang DZ, Li S, Hockemeyer D, Sutherland L, Wang Z, Schratt G, Richardson JA, Nordheim A, Olson EN. Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc Natl Acad Sci USA 2002;99:14855–14860.
  • Aravind L, Koonin EV. Sutherland L, Wang Z, Schratt G, Richardson JA, Nordheim A, Olson EN. SAP – a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci 2000;25:112–114.
  • Wang Z, Wang DZ, Pipes GC, Olson EN. Myocardin is a master regulator of smooth muscle gene expression. Proc Natl Acad Sci USA 2003;100:7129–7134.
  • Bishop EH. Pelvic scoring for elective induction. Obstet Gynecol 1964;24:266–268.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.