66
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Proximity of term labor deepens the fall of Doppler impedance in the fetal cerebral arteries

, &
Pages 283-290 | Received 05 May 2013, Accepted 24 May 2013, Published online: 16 Jul 2013

References

  • Tucker Blackburn S. Maternal, fetal, and neonatal physiology: a clinical perspective. St Louis, Missouri: Saunders-Elsevier Health Sciences; 2007:175
  • Vedmedovska N, Rezeberga D, Teibe U, et al. Placental pathology in fetal growth restriction. Eur J Obstet Gynecol Reprod Biol 2011;155:36–40
  • Hernandez-Andrade E, Serralde JA, Cruz-Martinez R. Can anomalies of fetal brain circulation be useful in the management of growth restricted fetuses? Prenat Diagn 2012;32:103–12
  • Morales-Roselló J, Peralta-Llorens N. Doppler study of the fetal vertebral artery in small for gestacional age fetuses with intrauterine growth restriction. J Ultrasound Med 2012;31:1003–10
  • Wladimiroff JW, Tonge HM, Steward PA. Doppler ultrasound assessment of cerebral blood flow in the human fetus. Br J Obstet Gynaecol 1986;93:471–5
  • Mari G, Deter RL. Middle cerebral artery flow velocity waveforms in normal and small-for-gestational-age fetuses. Am J Obstet Gynecol 1992;166:1262–70
  • Morales-Roselló J, Peralta-Llorens N. Fetal vertebral artery Doppler reference values at 19–41 weeks gestation. Fetal Diag Ther 2012;32:209–15
  • Acharya G, Wilsgaard T, Berntsen GK, et al. Reference ranges for serial measurements of umbilical artery Doppler indices in the second half of pregnancy. Am J Obstet Gynecol 2005;192:937–44
  • Bahlmann F, Reinhard I, Krummenauer F, et al. Blood flow velocity waveforms of the fetal middle cerebral artery in a normal population: reference values from 18 weeks to 42 weeks of gestation. J Perinat Med 2002;30:490–501
  • Morales-Roselló J, Hervás Marín D, Perales Marín A, Lopez Fraile S. Doppler study of the fetal vertebral and middle cerebral arteries in fetuses with normal and increased umbilical artery resistance indices. J Clin ultrasound 2012;41:224–9
  • Bakker PC, Van Geijn HP. Uterine activity: implications for the condition of the fetus. J Perinat Med 2008;36:30–7
  • Bakker PC, Kuver PH, Kuik DJ, Van Geijn HP. Elevated uterine activity increases the risk of fetal acidosis at birth. Am J Obstet Gynecol 2007;196:313. e1–6
  • Li H, Gudmundsson S, Olofsson P. Acute centralization of blood flow in compromised human fetuses evoked by uterine contractions. Early Hum Dev 2006;82:747–52
  • Cheema R, Dubiel M, Gudmundsson S. Fetal brain sparing is strongly related to the degree of increased placental vascular impedance. J Perinat Med 2006;34:318–22
  • Ghezzi F, Ghidini A, Romero R, et al. Doppler velocimetry of the fetal middle cerebral artery in patients with preterm labor and intact membranes. J Ultrasound Med 1995;14:361–6
  • Rizzo G, Capponi A, Arduini D, et al. Uterine and fetal blood flows in pregnancies complicated by preterm labor. Gynecol Obstet Invest 1996;42:163–6
  • Severi FM, Boni C, Bruni L, et al. The increase of blood flow in the fetal middle cerebral artery correlates with the onset of labor at term. Reprod Sci 2008;15:584–90
  • Morales-Roselló J, Peralta-Llorens N. Doppler impedance changes at the fetal brain vessels in a pregnancy affected with a multiple combination of uteroplacental anomalies. Case Report Med 2012;2012:293156. doi:10.1155/2012/293156
  • Grant RE. Outlines of comparative anatomy. Bailliere, London; 1841:508--9. Free E-book, Google books
  • Vaishnavi SN, Vlassenko AG, Rundle MM, et al. Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci USA 2010;107:17757–62
  • Cranston I, Marsden P, Matyka K, et al. Regional differences in cerebral blood flow and glucose utilization in diabetic man: the effect of insulin. J Cereb Blood Flow Metab 1998;18:130–40
  • Sauerbeck A, Pandya J, Singh I, et al. Analysis of regional brain mitochondrial bioenergetics and susceptibility to mitochondrial inhibition utilizing a microplate based system. J Neurosci Methods 2011;198:36–43
  • Wood CE, Giroux D, Gridley K. Fetal brain regional responses to cerebral hypoperfusion: modulation by estrogen. Brain Res 2003;993:84–9
  • Premkumar DR, Mishra RR, Overholt JL, et al. L-Type Ca (2+) channel activation regulates induction of c-fos transcription by hypoxia. J Appl Physiol 2000;88:1898–906
  • Ashwal S, Majcher JS, Longo LD. Patterns of fetal lamb regional cerebral blood flow during and after prolonged hypoxia: studies during the posthypoxic recovery period. Am J Obstet Gynecol 1981;139:365–72
  • Szymonowicz W, Walker AM, Yu VY, et al. Regional cerebral blood flow after hemorrhagic hypotension in the preterm, near term, and newborn lamb. Pediatr Res 1990;28:361–6
  • Tolcos M, Harding R, Loeliger M, et al. The fetal brainstem is relatively spared from injury following intrauterine hypoxemia. Brain Res Dev Brain Res 2003;143:73–81
  • Binks AP, Cunningham VJ, Adams L, Banzett RB. Gray matter blood flow change is unevenly distributed during moderate isocapnic hypoxia in humans. J Appl Physiol 2008;104:212–7
  • Sato K, Sadamoto T, Hirasawa A, et al. Differential blood flow responses to CO2 in human internal and external carotid and vertebral arteries. J Physiol 2012;590:3277–90
  • Sato K, Sadamoto T. Different blood flow responses to dynamic exercise between internal carotid and vertebral arteries in women. J Appl Physiol 2010;109:864–9
  • Ito H, Yokoyama I, Iida H, et al. Regional differences in cerebral vascular response to PaCO2 changes in humans measured by positron emission tomography. J Cereb Blood Flow Metab 2000;20:1264–70
  • Orr JA, DeSoignie RC, Wagerle LC, Fraser DB. Regional cerebral blood flow during hypercapnia in the anesthetized rabbit. Stroke 1983;14:802–7
  • Ogoh S, Sato K, Nakahara H, et al. Effect of acute hypoxia on blood flow in vertebral and internal carotid arteries. Exp Physiol 2012;98:692–8
  • Haddad GG, Donnelly DF. O2 deprivation induces a major depolarization in brain stem neurons in the adult but not in the neonatal rat. J Physiol 1990;429:411–28
  • Van Bel F, Sola A, Roman C, Rudolph AM. Perinatal regulation of the cerebral circulation: role of nitric oxide and prostaglandins. Pediatr Res 1997;42:299–304
  • Hall JE. Guyton and Hall text book of medical physiology. 12th ed. Philadelphia: Saunders-Elsevier Health Sciences; 2011: 202–8
  • Pearce W. Hypoxic regulation of the fetal cerebral circulation. J Appl Physiol 2006;100:731–8
  • Van Bel F, Sola A, Roman C, Rudolph AM. Role of nitric oxide in the regulation of the cerebral circulation in the lamb fetus during normoxemia and hypoxemia. Biol Neonate 1995;68:200–10
  • Hunter CJ, Blood AB, White CR, et al. Role of nitric oxide in hypoxic cerebral vasodilatation in the ovine fetus. J Physiol 2003;549:625–33
  • Petraglia F, Imperatore A, Challis JR. Neuroendocrine mechanisms in pregnancy and parturition. Endocr Rev 2010;31:783–816
  • Smith R, Smith JI, Shen X, et al. Patterns of plasma corticotropin releasing hormone, progesterone, estradiol, and estriol change and the onset of human labor. J Clin Endocrinol Metab 2009;94:2066–74
  • Smith R, Mesiano S, McGrath S. Hormone trajectories leading to human birth. Regul Pept 2002;108:159–64
  • Kamel RM. The onset of human parturition. Arch Gynecol Obstet 2010;281:975–82
  • Vitoratos N, Mastorakos G, Kountouris A, et al. Positive association of serum interleukin-1 beta and CRH levels in women with pre-term labor. J Endocrinol Invest 2007;30:35–40
  • Gao L, Lu C, Xu C, et al. Differential regulation of prostaglandin production mediated by corticotropin-releasing hormone receptor type 1 and type 2 in cultured human placental trophoblasts. Endocrinology 2008;149:2866–76
  • Clifton VL, Read MA, Leitch IM, et al. Corticotropin-releasing hormone-induced vasodilatation in the human fetal-placental circulation: involvement of the nitric oxide-cyclic guanosine 3',5'-monophosphate-mediated pathway. J Clin Endocrinol Metab 1995;80:2888–93
  • Clifton VL, Read MA, Boura AL, et al. Adrenocorticotropin causes vasodilatation in the human fetal-placental circulation. J Clin Endocrinol Metab 1996;81:1406–10
  • Bahado Singh, RO, Kovanci E, Jeffres A, et al. The Doppler cerebroplacental ratio and perinatal outcome in intrauterine growth restriction. Am J Obstet Gynecol 1999;180:750–6
  • Morales Rosello J, Hervas Marín D, Fillol Crespo M, Perales Marín A. Doppler changes in the vertebral, middle cerebral and umbilical arteries in fetuses delivered after 34 weeks: relationship to severity of growth restriction. Prenat Diagn 2012;32:960–7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.