175
Views
7
CrossRef citations to date
0
Altmetric
Original Article

When is the Capacity for Sentience Acquired During Human Fetal Development?

Pages 153-165 | Received 07 Mar 1991, Accepted 28 Jan 1992, Published online: 07 Jul 2009

References

  • Flower M J. Neuromaturation of the human fetus. J Med Phil 1985; 10: 237–251
  • Sadovsky E, Yaffe H. Daily fetal movement recording and fetal prognosis. Obstet Gynaecol 1973; 41: 845–850
  • de Vries J IP, Visser G HA, Prechtl H FR. The emergence of fetal behaviour. 1. Qualitative aspects. Early Hum Dev 1982; 7: 301–322
  • van Dongen L GR, Goudie E G. Fetal movement patterns in the first trimester of pregnancy. Br J Obstet Gynaecol 1980; 87: 191–193
  • Humphrey T. Function of the nervous system during prenatal life. “Perinatal Physiology.”, U Stave, A A Weech. Plenum Press, New York 1978; 651–683
  • Martin J H. Receptor physiology and submodality coding in the somatic sensory system. “Principles of Neural Science,” 2nd ed., E R Kandel, J H Shwartz. Elsevier, New York 1985; 287–300
  • Kandel E R. Central representation of touch. “Principles of Neural Science,”, 2nd ed., E R Kandel, J H Schwartz. Elsevier, New York 1985; 316–330
  • Kelly J P. Anatomical basis of sensory perception and motor coordination. “Principles of Neural Science,” 2nd ed., E R Kandel, J H Schwartz. Elsevier, New York 1985; 222–243
  • Martin J H. Anatomical substrates for somatic sensation. “Principles of Neural Science,” 2nd ed, E R Kandel, J H Schwartz. Elsevier, New York 1985; 302–315
  • Kelly D D. Central representations of pain and analgesia. “Principles of Neural Science,” 2nd ed, E R Kandel, J H Schwartz. Elsevier, New York 1985; 331–343
  • Willis W D. Ascending nociceptive tracts. “The Pain System. The Neural Basis of Nociceptive Transmission in the Mammalian Nervous System. Pain and Headache Vol. 8.”. Karger, Basel 1985; 145–212
  • Yaksh T L, Hammond D L. Peripheral and central substrates involved in the rostrad transmission of nociceptive information. Pain 1982; 13: 1–85
  • Okado N, Kakimi S, Kojima T. Synaptogenesis in the cervical cord of the human embryo: Sequence of synapse formation in a spinal reflex pathway. J Comp Neurol 1979; 184: 491–518
  • Okado N. Onset of synapse formation in the human spinal cord. J Comp Neurol 1981; 201: 211–219
  • Okado N. Development of the human cervical spinal cord with reference to synapse formation in the motor nucleus. J Comp Neurol 1980; 191: 495–513
  • Ghez C. Introduction to the motor systems. “Principles of Neural Science,” 2nd ed., E R Kandel, J H Schwartz. Elsevier, New York 1985; 430–442
  • Peterson B W. Participation of pontomedullary reticular neurons in specific motor activity. “The Reticular Formation Revisited.”, J H Hobson, M AB Brazier. Raven Press, New York 1980; 171–192
  • Bergström R M. Electrical parameters of the brain during ontogeny. “Brain and Early Behaviour. Development in the Fetus and Infant.”, R J Robinson. Academic Press, London 1969; 15–41
  • Marin-Padilla M. Early ontogenesis of the human cerebral cortex. “Development and Maturation of Cerebral Cortex,”, A Peters, E G Jones. Plenum Press, New York 1988; Vol. 7: 1–34
  • Hugelin A. Does the respiratory rhythm originate from a reticular oscillator in the waking state.'. “The Reticular Formation Revisited.”, J H Hobson, M AB Brazier. Raven Press, New York 1980; 261–274
  • Marin-Padilla M. Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 1978; 152: 109–126
  • Sidman R L, Rakic P. Neuronal migration, with special reference to developing human brain. A review. Brain Res 1973; 62: 1–35
  • Marin-Padilla M. Structural organization of the human cerebral cortex prior to the appearance of the cortical plate. Anat Embryol 1983; 168: 21–40
  • Larroche J C. The marginal layer in the neocortex of a 7 week-old human embryo. Anat Embryol 1981; 162: 301–312
  • Marin-Padilla M, Marin-Padilla M T. Origin, prenatal development and structural organization of layer 1 of the human cerebral (motor) cortex. Anat Embryol 1982; 164: 161–206
  • Molliver M E, Kostovic I, Van der Loos H. The development of synapses in cerebral cortex of the human fetus. Brain Res 1973; 50: 403–407
  • Larroche J C, Privat A, Jardin L (1981) Some fine structures of the human fetal brain. “Physiological and Biochemical Basis for Perinatal Medicine.”. Samuel Z. Levine Conf. 1st. Int. Meet., Paris, Basel, 1979. Karger, 350–358
  • Nolte J. Cerebral Cortex. “The Human Brain: An Introduction to Its Functional Anatomy.”. C.V. Mosby, St Louis 1981; 257–284
  • Kostovic I, Goldman-Rakic P S. Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing brain. J Comp Neurol 1983; 219: 431–447
  • Mrzljak L, Uylings H MB, Kostovic I, Van Eden C G. Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study. J Comp Neurol 1988; 271: 355–386
  • Kostivic I, Rakic P. Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by Transient cholinesterase staining.). Neurosci 1984; 4: 25–42
  • Kupfermann I. Hemispheric asymmetries and the cortical localization of higher cognitive and affective functions. “Principles of Neural Science,” 2nd ed., E R Kandel, J H Schwartz. Elsevier, New York 1985; 673–687
  • Tohyama M, Shiotani Y. Neuropeptides in spinal cord. “Peptides and Neurological Disease. Progress in Brain Research,”, P C Emson, M Rosser, M Tohyama. Elsevier, Amsterdam 1986; Vol. 66: 177–218
  • Ruda M A, Bennet G J, Dubner R. Neurochemistry and neural circuitry in the dorsal horn. “Peptides and Neurological Disease. Progress in Brain Research,”, P C Emson, M Rosser, M Tohyama. Elsevier, Amsterdam 1986; Vol. 66: 219–268
  • Tebécis A K. Diencephalon. “Transmitters and Identified Neurons in the Mammalian Central Nervous System.”. Scientechnica, Bristol 1974; 116–167
  • Jones E G. The thalamus. “Chemical Neuroanatomy.”, P C Emson. Raven Press, New York 1983; 257–293
  • Moore R Y. The reticular formation: Monoamine neuron systems. “The Reticular Formation Revisited.”, J H Hobson, M AB Brazier. Raven Press, New York 1980; 67–81
  • Parnavelas J G, Papadopoulos G C, Cavanagh M E. Changes in neurotransmitters during development. “Cerebral Cortex. Vol. 7. Development and Maturation of Cerebral Cortex.”. Plenum Press, New York 1988; 177–209
  • McGeer P L, McGeer E G. Amino acid neurotransmitters. “Basic Neurochemistry.”, G J Siegel, B W Agranoff, R W Albers, P B Molinoff. Raven Press, New York 1989; 311–332
  • Tebécis A K. Cerebral cortex. “Transmitters and Identified Neurons in the Mammalian Central Nervous System.”. Scientechnica, Bristol 1974; 207–236
  • Johnston M V. Biochemistry of neurotransmitters in cortical development. “Cerebral Cortex. Vol. 7. Development and Maturation of Cerebral Cortex.”. Plenum Press, New York 1988; 211–236
  • Marti E, Gibson S J, Polak J M, Facer P, Springall D R, Van Aswegen G, Aitchison M, Koltzenburg M. Ontogeny of peptide- and amine-containing neurones in motor, sensory, and autonomic regions of rat and human spinal cord, dorsal root ganglia, and rat skin. J Comp Neurol 1987; 266: 332–359
  • Charnay Y, Paulin C, Chayvialle J A, Dubois P M. Distribution of substance P-like immunoreactivity in the spinal cord and dorsal root ganglia of the human foetus and infant. Neuroscience 1983; 10: 41–55
  • Charnay Y, Paulin C, Dray F, Dubois P M. Distribution of enkephalin in human fetus and infant spinal cord: An immunofluorescence study. J Comp Neurol 1984; 223: 415–423
  • Charnay Y, Chayvialle J A, Said S I, Dubois P M. Localization of vasoactive intestinal peptide immunoreactivity in human foetus and new-born infant spinal cord. Neuroscience 1985; 14: 195–205
  • Charnay Y, Chayvialle J A, Pradayrol L, Bouvier R, Paulin C, Dubois P M. Ontogeny of somatostatin-like immunoreactivity in the human fetus and infant spinal cord. Dev Brain Res 1987; 36: 63–73
  • Brooksbank B WL, Martinez M, Atkinson D J, Balazs R. Biochemical development of the human brain. I. Some parameters of the cholinergic system. Dev Neurosci 1987; 1: 267–284
  • Brooksbank B WL, Atkinson D J, Balazs R. Biochemical development of the human brain. II. Some parameters of the GABA-ergic system. Dev Neurosci 1981; 4: 188–200
  • Spehlmann R. The normal sleep EEG of adults over 20 years. “EEG Primer.”. Elsevier, Amsterdam 1981; 201–211
  • Spehlmann R. The normal EEG of wakeful resting adults of 20–60 years of age. “EEG Primer.”. Elsevier, Amsterdam 1981; 183–199
  • Andreassi J L. The EEG and Behavior: Sensation, attention, perception, conditioning and sleep. “Psychophysiology: Human Behavior and Physiological Response,” 2nd ed. Lawrence Erlbaum, Hillsdale, NJ 1989; 108–143
  • Cracco R Q, Cracco J B. Somatosensory evoked potentials in man: Far field potentials. Electroencephogr Clin Neurophysiol 1976; 41: 460–466
  • Andreassi J L. Event-related brain potentials and behavior: measurement, motor activity, hemispheric asymmetries, and sleep. “Psychophysiology: Human Behavior and Physiologial Response.”. Lawrence Erlbaum, Hillsdale, NJ 1989; 82–109
  • Desmedt J E, Brunko E, Debecker J. Maturation of the somatosensory evoked potentials in normal infants and children, with special reference to the early N1 component. Electroencephogr Clin Neurophysiol 1976; 40: 43–58
  • Desmedt J E, Manil J. Somatosensory evoked potentials of the normal human neonate in REM sleep, in slow wave sleep and in waking, Electroencephogr. Clin Neurophysiol 1970; 29: 113–126
  • Shagass C. Evoked responses and impaired consciousness. “Evoked Brain Potentials in Psychiatry.”. Plenum Press, New York 1972; 107–127
  • Bergström R M, Bergström L. Prenatal development of stretch reflex functions and brainstem activity in the human. Ann Chir Gynaecol Fenn 52, Suppl. 1963; 117: 1–21
  • Borkowski W J, Bernstine R L. Electroencephalography of the fetus. Neurology 1955; 5: 362–365
  • Hughes J R, Fino J, Gagnon L. Periods of activity and quiescence in the premature EEG. Neuropediatrics 1983; 14: 66–72
  • Spehlmann R. The normal EEG from premature age to the age of 19 years. “EEG Primer.”. Elsevier, Amsterdam 1981; 159–182
  • Torres F, Anderson C. The normal EEG the human newborn. J Clin Neurophysiol 1985; 2: 89–103
  • Nolte R, Haas G. A polygraphs study of bioelectric brain maturation in preterm infants. Dev Med Child Neurol 1978; 20: 167–182
  • Hrbek A, Karlberg P, Olsson T. Development of visual and somatosensory evoked responses in pre-term newborn infants. Electroencephogr Clin Neurophysiol 1973; 34: 225–232
  • Klimach V J, Cooke R WI. Maturation of the neonatal somatosensory evoked response in preterm infants. Dev Med Child Neurol 1988; 30: 208–214
  • Goldenring J M. The brain-life theory: towards a consistent biological definition of humanness. J Med Ethics 1985; 11: 198–204

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.