654
Views
20
CrossRef citations to date
0
Altmetric
Discussion Paper

Multivariate DPOAE metrics for identifying changes in hearing: Perspectives from ototoxicity monitoring

, , &
Pages S51-S62 | Received 19 Oct 2011, Accepted 24 Oct 2011, Published online: 23 Jan 2012

References

  • Abdala C., Dhar S. & Kalluri R. 2011. Level dependence of distortion product otoacoustic emission phase is attributed to component mixing. J Acoust Soc Am, 129(5), 3123–3133.
  • Ahmed H.O., Dennis J.H., Badran O., Ismail M., Ballal S.G. . 2001. High-frequency (10–18 kHz) hearing thresholds: Reliability, and effects of age and occupational noise exposure. Occup Med, 51(4), 245–258.
  • American Speech-Language and Hearing Association (ASHA). 1994. Guidelines for the audiologic management of individuals receiving cochleotoxic drug therapy. ASHA, 36, 11–19.
  • Arnold D.J., Lonsbury-Martin B.L. & Martin G.K., 1999. High frequency hearing influences lower-frequency distortion-product otoacoustic emissions. Arch Otolaryngol Head Neck Surg, 125(2), 215–222.
  • Avan P. & Bonfils P. 1993. Frequency specificity of human distortion product otoacoustic emissions. Audiology, 32(1), 12–26.
  • Beattie R.C., Kenworthy O.T. & Luna C.A. 2003. Immediate and short-term reliability of distortion-product otoacoustic emissions. Int J Audiol, 42, 348–354.
  • Bohne B.A. & Clark W.W.W. 1982. Growth of hearing loss and cochlear lesion with increasing duration of noise exposure. In: R.P. Hamernik, D. Henderson, R.J. Salvi (eds.) New Perspectives on Noise-Induced Hearing Loss. New York, USA: Raven Press, pp. 283–300.
  • Bohne B.A. & Harding G.W. 2000. Degeneration in the cochlea after noise damage: Primary versus secondary events. Am J Otol, 21(4), 505–509.
  • Bonfils P. & Avan P. 1992. Distortion-product otoacoustic emissions: Values for clinical use. Arch Otolaryngol Head Neck Surg, 118(10), 1069–1076.
  • Dallos P.J. & Harris D.M. 1978. Properties of auditory-nerve responses in the absence of outer hair cells. J Neurophysiol, 41, 365–383.
  • Davis R.I., Ahroon W.A. & Hamernik R.P. 1989. The relation among hearing loss, sensory cell loss and tuning characteristics in the chinchilla. Hear Res, 41(1), 1–14.
  • Delb W., Hoppe U., Liebel J. & Iro H. 1999. Determination of acute noise effects using distortion product otoacoustic emissions. Scand Audiol, 28(2), 67–76.
  • Desai A., Reed D., Cheyne A., Richards S. & Prasher D. 1999. Absence of otoacoustic emissions in subjects with normal audiometric thresholds implies exposure to noise. Noise Health, 1, 58–65.
  • Dille M.F., McMillan G.P., Reavis K.M., Jacobs P., Fausti S.A. . 2010. Ototoxicity risk assessment combining distortion product otoacoustic emissions with a cisplatin dose model. J Acoust Soc Am, 128(3), 1163–1174.
  • Dorn P.A., Piskorski P., Gorga M.P., Neely S.T. & Keefe D.H. 1999. Predicting audiometric status from distortion product otoacoustic emissions using multivariate analyses. Ear Hear, 20(2), 149–163.
  • Dreisbach L.E., Torre III P., Kramer S.J., Kopke R., Jackson R. . 2008. Influence of ultrahigh-frequency hearing thresholds on distortion-product otoacoustic emission levels at conventional frequencies. J Am Acad Audiol, 19(4), 325–336.
  • Engdahl B. & Kemp D.T. 1996. The effect of noise exposure on the details of distortion product otoacoustic emissions in humans. J Acoust Soc Am, 99(3), 1573–1587.
  • Fausti S.A., Erickson D.A., Frey R.H., Rappaport B.Z. & Schechter M.A. 1981. The effects of noise upon human hearing sensitivity from 8000 to 20 000 Hz. J Acoust Soc Am, 69(5), 1343–1347.
  • Fausti S.A., Henry J.A., Helt W.J., Phillips D.S., Frey R.H. . 1999. An individualized, sensitive frequency range for early detection of ototoxicity. Ear Hear, 20(6), 497–505.
  • Fausti S.A., Helt W.J., Phillips D.S., Gordon J.S., Bratt G.W. . 2003. Early detection of ototoxicity using 1/6th-octave steps. J Am Acad Audiol, 14(8), 444–450.
  • Fausti S.A., Henry J.A., Heidi I., Schaffer M.A., Olson D.J. . 1993. High-frequency monitoring for early detection of cisplatin ototoxicity. Arch Otolaryngol Head Neck Surg, 119, 661–666.
  • Fausti S.A., Larson V.D., Noffsinger D., Wilson R.H., Phillips D.S. . 1994. High-frequency audiometric monitoring strategies for early detection of ototoxicity. Ear Hear, 15(3), 232–239.
  • Franklin D.J., McCoy M.J., Martin G.K. . 1992. Test/retest reliability of distortion-product and transiently evoked otoacoustic emissions. Ear Hear, 13, 417–429.
  • Gorga M.P., Stover L. & Neely S.T., 1996. The use of cumulative distributions to determine critical values and levels of confidence for clinical distortion product ototacoustic emission measurements. J Acoust Soc Am, 100(2 Pt 1), 968–977.
  • Gorga M.P., Neely S.T., Ohlrich B., Hoover B., Redner J. . 1997. From laboratory to clinic: A large scale study of distortion product otoacoustic emissions in ears with normal hearing and ears with hearing loss. Ear Hear, 18(6), 440–455.
  • Gorga M.P., Neely S.T. & Dorn P.A. 1999. Distortion product otoacoustic emission test performance for a priori criteria and for multifrequency audiometric standards. Ear Hear, 20(4), 345–362.
  • Gorga M.P., Dierking D.M., Johnson T.A., Beauchaine K.L., Garner C.A. . 2005. A validation and potential clinical application of multivariate analyses of distortion-product otoacoustic emission data. Ear Hear, 26(6), 593–607.
  • Gorga M.P., Neely S.T., Bergman B., Beauchaine K.L., Kaminski J.R. . 1993a. Otoacoustic emissions from normal-hearing and hearing-impaired subjects: Distortion product responses. J Acoust Soc Am, 93(4 Pt 1), 2050–2060.
  • Gorga M.P., Neely S.T., Bergman B.M., Beauchaine K.L., Kaminski J.R. . 1993b. A comparison of transient-evoked and distortion product ototacoustic emissions in normal-hearing and hearing-impaired subjects. J Acoust Soc Am, 94(5), 2639–2648.
  • Hamdan A.L., Abouchacra K.S., Zeki A.L., Hazzouri A.G. & Zaytoun G. 2008. Transient-evoked otoacoustic emissions in a group of professional singers who have normal pure-tone hearing thresholds. Ear Hear, 29(3), 360–377.
  • Hamernik R.P., Patterson J.H., Turrentine G.A. Ahroon W.A., 1989. The quantitative relation between sensory cell loss and hearing thresholds. Hear Res, 38(3), 199–211.
  • Kalluri R. & Shera C.A. 2007. Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am, 121(4), 2097–2110.
  • Katbamna B., Homnick D.N. & Marks J.H. 1999. Effects of chronic tobramycin treatment on distortion product otoacoustic emissions. Ear Hear, 20(5), 393–402.
  • Kim D.O., Molnar C.E. & Matthews J.W. 1980. Cochlear mechanics: nonlinear behavior in two-tone responses as reflected in cochlear- nerve-fiber responses and in ear-canal sound pressure. J Acoust Soc Am, 67, 1704–1721.
  • Kim D.O., Paparello J., Jung M.D., Smurzynski J. & Sun X. 1996. Distortion product otoacoustic emission test of sensorineural hearing loss: Performance regarding sensitivity, specificity and receiver operating characteristics. Acta Otolaryngol, 116(1), 3–11.
  • Konrad-Martin D., Neely S.T., Keefe D.H., Dorn P.A. & Gorga M.P. 2001. Sources of DPOAEs revealed by suppression experiments and IFFTs in normal ears. J Acoust Soc Am, 109, 2862–2879.
  • Konrad-Martin, D., Neely, S.T., Keefe, D.H., Dorn, P.A., Cyr, E., Gorga, M.P., 2002. Sources of DPOAEs revealed by suppression experiments, inverse fast Fourier transforms, and SFOAEs in impaired ears. J Acoust Soc Am, 111(4), 1800–1809.
  • Konopka W., Pawlaczyk-Luszczynska M., Sliwinska-Kowalska M., Grzanka A. & Zalewski P. 2005. Effects of impulse noise on transiently evoked otoacoustic emission in soldiers. Int J Audiol, 44(1), 3–7.
  • Kujawa S.G. & Liberman M.C. 2009. Adding insult to injury: Cochlear nerve degeneration after ‘temporary’ noise-induced hearing loss. J Neurosci, 29(45), 14077–14085.
  • Kummer P., Janssen T. & Arnold W. 1998. The level and growth behavior of the 2f1-f2 distortion product otoacoustic emission and its relationship to auditory sensitivity in normal hearing and cochlear hearing loss. J Acoust Soc Am, 103(6), 3431–3444.
  • Lapsley Miller J.A., Marshall L., Heller L.M. & Hughes L.M. 2006. Low-level otoacoustic emissions may predict susceptibility to noise- induced hearing loss. J Acoust Soc Am, 120(1), 280–296.
  • Liberman M.C. & Mulroy M.J. 1982. Acute and chronic effects of acoustic trauma: Cochlear pathology and auditory nerve pathophysiology. In: R.P. Hamernik, D. Henderson, R.J. Salvi (eds.), New Perspectives on Noise-Induced Hearing Loss. New York, USA: Raven Press, pp. 105–136.
  • Lin H.W., Furman A.C., Kujawa S.G. & Liberman M.C. 2011. Primary neural degeneration in the guinea pig cochlea after reversible noise- induced threshold shift. J Assoc Res Otolaryngol, 12(5), 605–616.
  • Maison S.F. & Liberman M.C. 2000. Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J Neurosci, 20, 4701–4707.
  • Marshall L., Lapsley Miller J.A. & Heller L.M. 2001. Distortion-product otoacoustic emissions as a screening tool for noise-induced hearing loss. Noise Health, 3, 43–60.
  • Marshall L., Lapsley Miller J.A., Heller L.M., Wolgemuth K.S., Hughes L.M. . 2009. Detecting incipient inner-ear damage from impulse noise with otoacoustic emissions. J Acoust Soc Am, 125(2), 995–1013.
  • Martin G.K., Ohlms L.A., Franklin D.J., Harris F.P. & Lonsbury- Martin B.L. 1990. Distortion product emissions in humans. III: Influence of sensorineural hearing loss. Ann Otol Rhinol Laryngol, 99, 30–42.
  • Martin G.K., Stagner B.B., Fahey P.F. & Lonsbury-Martin B.L. 2009. Steep and shallow phase gradient distortion product otoacoustic emissions arising basal to the primary tones. J Acoust Soc Am, 125(3), 85–92.
  • Neely S.T. & Liu Z. 1993. EMAV: Otoacoustic emission averager. Tech Memo No 17 (Boys Town National Research Hospital, Omaha, USA).
  • Nordmann A.S., Bohne B.A. & Harding G.W. 2000. Histopathological differences between temporary and permanent threshold shift. Hear Res, 139(1–2), 13–30.
  • Obuchowski N.A. 1997. Nonparametric analysis of clustered ROC curve data. Biometrics, 53(2), 567–578.
  • Occupational Safety and Health Administration (OSHA). 2004. Supporting statement for information collection requirements for the occupational exposure to noise (29 CFR 1910.95). Retrieved June 30, 2011 from: http://www.osha.gov/Reduction_Act/1218-0048.html
  • Pepe M.S. 2003. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford: Oxford University Press.
  • Perez R., Freeman S. & Sohmer H. 2004. Effect of an initial noise induced hearing loss on subsequent noise induced hearing loss. Hear Res, 192(1–2), 101–106.
  • Pirilã T. 1991. Left-right asymmetry in the human response to experimental noise exposure. Acta Otolaryngol (Stockh), 111, 861–866.
  • Probst R. 1990. Otoacoustic emission: An overview. Adv Otorhinolaryngol, 44, 1–91.
  • Reavis K.M., McMillan G., Austin D., Gallun F., Fausti S. . 2011. Distortion-product otoacoustic emission test performance for ototoxicity monitoring. Ear Hear, 32(1), 61–74.
  • Roede J., Harris F.P., Probst R. . 1993. Repeatability of distortion product otoacoustic emissions in normally hearing humans. Audiology, 32, 273–281.
  • Ruggero M.A. & Rich N.C. 1991. Furosemide alters organ of corti mechanics: Evidence for feedback of outer hair cells upon the basilar membrane. J Neurosci, 11(4), 1057–1067.
  • Seixas N.S., Goldman B., Sheppard L., Neitzel R., Norton S. . 2005. Prospective noise induced changes to hearing among construction industry apprentices. Occup Environ Med, 62, 309–317.
  • Simon R. 2005. Roadmap for developing and validating therapeutically relevant genomic classifiers. J Clin Oncol, 23(29), 7332–7341.
  • Somma G., Pietroiusti A., Magrini A., Coppeta L., Ancona C. . 2008. Extended high-frequency audiometry and noise induced hearing loss in cement workers. Am J Ind Med, 51(6), 452–462.
  • Stover L., Gorga M.P., Neely S.T. . 1996. Toward optimizing the clinical utility of distortion product otoacoustic emission measurements. J Acoust Soc Am, 100, (2, Pt. 1), 956–967.
  • Sutton L.A., Lonsbury-Martin B.L., Martin G.K. & Whitehead M.L. 1994. Sensitivity of distortion-product otoacoustic emissions in humans to tonal over-exposure: Time course of recovery and effects of lowering L2. Hear Res, 75 1–2, 161–174.
  • Talmadge C.L., Tubis A., Long G.R. & Piskorski P. 1998. Modeling otoacoustic emission and hearing threshold fine structures. J Acoust Soc Am, 104, 1517–1543.
  • Talmadge C.L., Tubis A., Long G.R. & Tong C. 2000. Modeling the combined effects of basilar membrane nonlinearity and roughness on stimulus frequency otoacoustic emission fine structure. J Acoust Soc Am, 108, 2911–2932.
  • Wang H., Turner J.G., Ling L., Parrish J.L., Hughes L.F. . 2009. Age-related changes in glycine receptor subunit composition and binding in dorsal cochlear nucleus. Neurosci, 160, 227–239.
  • Zeng F.G., Kong Y.Y., Michalewski H.J. & Starr A. 2005. Perceptual consequences of disrupted auditory nerve activity. J Neurophys, 93, 3050–3063.
  • Zweig G. & Shera C. 1995. The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am, 98, 2018–2047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.