196
Views
22
CrossRef citations to date
0
Altmetric
Articles

Exposure to ELF- magnetic field promotes restoration of sensori-motor functions in adult rats with hemisection of thoracic spinal cord

, , , &
Pages 180-194 | Published online: 16 Aug 2012

References

  • Ahmed Z., Wagdy M., Benjamin M., . 2011. Therapeutic effects of acrobatic exercise and magnetic field exposure on functional recovery after spinal cord injury in mice. Bioelectromagnetics. 32:49–57.
  • Basso D. M., Beattie M. S., Bresnahan J. C.. 1995. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma. 12 1: 1–21.
  • Basso D. M., Beattie M. S., Bresnahan J. C.. 1996. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight drop device versus transection. Exper. Neurol.. 139:244–256.
  • Basso D. M.. 2004. Behavioral testing after spinal cord injury: congruities, complexities, and controversies. J. Neurotrauma. 21 4: 395–404.
  • Bareyre F. M., Kerschensteiner M., Raineteau O., . 2004. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci.. 7 3: 269–277.
  • Belci M., Catley M., Husain M., . 2004. Magnetic brain stimulation can improve clinical outcome in incomplete spinal cord injured patients. Spinal Cord. 42:417–419.
  • Bester H., Beggs S., Woolf C. J.. 2000. Changes in tactile stimuli-induced behavior and c-Fos expression in the superficial dorsal horn and in parabrachial nuclei after sciatic nerve crush. J. Compar. Neurol.. 428:45–61.
  • Bethea J. R., Nagashima H., Acosta M. C., . 1999. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J. Neurotrauma. 16:851–863.
  • Campbell J. N., Meyer R. A.. 2006. Mechanisms of neuropathic pain. Neuron. 52 1: 77–92.
  • Carlson J. D., Maire J. J., Martenson M. E., Heinricher M. M.. 2007. Sensitization of pain-modulating neurons in the rostral ventromedial medulla after peripheral nerve injury. J. Neurosci.. 27 48: 13222–13231.
  • Cho D. C., Cheong J. H., Yang M. S., . 2011. The effect of minocycline on motor neuron recovery and neuropathic pain in a rat model of spinal cord injury. J. Kor. Neurosurg. Soc.. 49:83–91.
  • Christensen M. D., Everhart A. W., Pickelman J. T., Hulsebosch C. E.. 1996. Mechanical and thermal allodynia in chronic central pain following spinal cord injury. Pain. 68:97–107.
  • Cliffer K. D., Tonra J. R., Carson S. R., . 1998. Consistent repeated M- and H-Wave recording in the hind limb of rats. Muscle Nerve. 21 11: 1405–1413.
  • Courtine G., Song B., Roy R. R., . 2008. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med.. 14 1: 69–74.
  • Craig A. D., Bushnell M. C., Zhang E. T., Blomqvist A.. 1994. A thalamic nucleus specific for pain and temperature sensation. Nature. 372:770–773.
  • Crowe M. J., Sun Z. P., Battocletti J. H., . 2003. Exposure to pulsed magnetic fields enhances motor recovery in cats after spinal cord injury. Spine. 28 24: 2660–2666.
  • Del-Seppia C., Ghione S., Luschi P., Papi F.. 1995. Exposure to oscillating magnetic fields influences sensitivity to electrical stimuli I: experiments on pigeons. Bioeletromagnetics. 16:290–294.
  • Espinosa J. M., Liberti M., Lagroye I., Veyret B.. 2006. Exposure to AC and DC magnetic fields induces changes in 5-HT1B receptor binding parameters in rat brain membranes. Bioelectromagnetics. 27 5: 414–422.
  • Fanelli C., Coppola S., Barone R., . 1999. Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx. FASEB J.. 13:95–102.
  • Filli L., Zorner B., Weinmann O., Schwab M. E.. 2011. Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Squard syndrome. Brain. 134:2261–2273.
  • Gerasimenko Y. P., Ichiyama R. M., Lavrov I. A., . 2007. Epidural spinal cord stimulation plus quipazine administration enable stepping in complete spinal adult rats. J. Neurophysiol.. 98 5: 2525–2536.
  • Hall E. D.. 2001. Pharmacological treatment of acute spinal cord injury: how do we build on past success?. J. Spinal Cord Med.. 24 3: 142–146.
  • Hains B. C., Everhart A. W., Fullwood S. E., Hulsebosch C. E.. 2002. Changes in serotonin, serotonin transporter expression and serotonin denervation supersensitivity: involvement in chronic central pain after spinal hemisection in the rat. Exper. Neurol.. 175 2: 347–362.
  • Hubscher C. G., Johnson R. D.. 1999. Changes in neuronal receptive field characteristics in caudal brain stem following chronic spinal cord injury. J. Neurotrauma. 16:533–541.
  • Ito H., Basset C. A.. 1983. Effect of weak, pulsing electromagnetic fields on neural regeneration in the rat. Clin. Orthopaed. Related Res.. 181:283–290.
  • Kaszuba-Zwoinska J., Ciecko-Michalska I., Madroszkiewicz D., . 2008. Magnetic field anti-inflammatory effects in Crohn's disease depends upon viability and cytokine profile of the immune competent cells. J. Physiol. Pharmacol.. 59 1: 177–187.
  • Kavaliars M., Prato F. S.. 1999. Light-dependent effects of magnetic on nitric oxide activation in the land snail. Neuro Report. 10:1–5.
  • Kavaliers M., Ossenkopp K. P.. 1986. Magnetic field inhibition of morphine-induced Analgesia and behavioral activity in mice: evidence for involvement of calcium ions. Brain Res.. 379:30–38.
  • Kavaliers M., Ossenkopp K. P.. 1993. Repeated naloxone treatments and exposure to weak 60 Hz magnetic fields have “analgesia” effects in snail. Brain Res.. 620:159–162.
  • Kerns J. M., Lucchinetti C.. 1992. Electrical field effects on crushed nerve regeneration. Exper. Neurol.. 117 1: 71–80.
  • Kiehn O.. 2006. Locomotor circuits in the mammalian spinal cord. Ann. Rev. Neurosci.. 29:279–306.
  • Kirschvink J. L.. 1992. Uniform magnetic fields and double-wrapped coil systems: improved techniques for the design of bioelectromagnetic experiments. Bioelectromagnetics. 13 5: 401–411.
  • Kolosova L. I., Nozdrachev A. D., Akoev G. N., . 2000. Activity of foot skin mechanoreceptor and afferent nerve fibers in the adult rat sciatic nerve are altered after central axotomy of sensory neurons. Neuroscience. 96:215–219.
  • Kriz N., Yamamotova A., Tobias J., Rokyta R.. 2006. Tail-flick latency and self-mutilation following unilateral deafferentation in rats. Physiol. Res.. 55:213–220.
  • Kumar S., Jain S., Behari J., . 2010. Effect of magnetic field on food and water intake and body weight of spinal cord injured rats. Ind. J. Exper. Biol.. 48 10: 982–986.
  • Lacroix S., Tuszynski M. H.. 2000. Neurotrophic factors and gene therapy in spinal cord injury. Neurorehab. Neur. Repair. 14:265–275.
  • Lindsey A. E., Lo Verso R. L., Tovar C. A., . 2000. An analysis of changes in sensory thresholds to mild tactile and cold stimuli after experimental spinal cord injury in the rat. Neurorehab. Neur. Repair. 14 4: 287–300.
  • Mariano A. J.. 1992. Chronic pain and spinal cord injury. Clin. J. Pain. 8 2: 87–92.
  • Massot O., Grimaldi B., Bailly J. M., . 2000. Magnetic field desensitizes 5-HT (1B) receptor in brain: pharmacological and functional studies. Brain Res.. 858 1: 143–150.
  • Mathur R., Dhawan L., Upadhyay R.. 2006. Pain responses in rats exposed to 50 Hz magnetic field for varied durations. In: Mathur R.. editors. Pain Updated: Mechanisms and Effects. New Delhi: Anamaya Publishers187–213.
  • McKay J. C., Prato F. S., Thomas A. W.. 2007. A literature review: the effects of magnetic field exposure on blood flow and blood vessels in the microvasculature. Bioelectromagnetics. 28:81–98.
  • Milgram J., Shahar R., Levin-Harrus T., Kass P. J.. 2004. The effect of short, high intensity magnetic field pulses on the healing of skin wounds in rats. Bioelectromagnetics. 25 4: 271–277.
  • Rakesh R. M., Mathur R.. 2008. Threshold of pain in chronic magnetic field- (50 Hz, 17.9 microT) exposed rats: effect of sucrose ingestion. Electromagn. Biol. Med.. 27 3: 254–265.
  • Rosenzweig E. S., McDonald J. W.. 2004. Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair. Curr. Opin. Neurol.. 17 2: 121–131.
  • Rosenzweig E. S., Courtine G., Jindrich D. L., . 2010. Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat. Neurosci.. 13 12: 1505–1510.
  • Schwab M. E.. 2002. Repairing the injured spinal cord. Science. 295:1029–1031.
  • Shupak N. M., Hensel J. M., Cross-Mellor S. K., . 2004. Analgesic and behavioral effects of a 100 μT specific pulsed extremely low frequency magnetic field on control and morphine treated CF-1 mice. Neurosci. Lett.. 354 1: 30–33.
  • Sisken B. F., Walker J., Orgel M.. 1993. Prospects on clinical applications of electrical stimulation for nerve regeneration. J. Cell. Biochem.. 51 4: 404–409.
  • Thomas S. L., Gorassini M. A.. 2005. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J. Neurophysiol.. 94 4: 2844–2855.
  • Wada S., Yone K., Ishidou Y., . 1999. Apoptosis following spinal cord injury in rats and preventive effect of N-methyl-D-aspartate receptor antagonist. J. Neurosurg.. 91:98–104.
  • White D. M.. 2000. Neurotrophin-3 antisense oligonucleotide attenuates nerve injury-induced Aß-fibre sprouting. Brain Res.. 885:79–86.
  • Willis W. D., Westlund K. N.. 1997. Neuroanatomy of pain system and of the pathways that modulate pain. J. Clin. Neurophysiol.. 14:2–31.
  • Yague J. G., Foffani G., Aguilar J.. 2011. Cortical hyperexcitability in response to preserved spinothalamic inputs immediately after spinal cord hemisection. Exper. Neurol.. 227:252–263.
  • Zhong G., Diaz-Rios M. E., Harris-Warrick R. M.. 2006. Serotonin modulates the properties of ascending commissural interneurons in the neonatal mouse spinal cord. J. Neurophysiol.. 95 3: 1545–1555.
  • Zurita M., Vaquero J.. 2006. Bone marrow stromal cells can achieve cure of chronic paraplegic rats: functional and morphological outcome one year after transplantation. Neurosci. Lett.. 402 1–2: 51–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.