708
Views
42
CrossRef citations to date
0
Altmetric
Articles

Bioelectromagnetic medicine: The role of resonance signaling

, , , &
Pages 484-499 | Received 08 Mar 2012, Accepted 09 Jul 2012, Published online: 16 Jan 2013

References

  • Aarholt E, Flinn EA, Smith CW. 1981. Effects of low frequency magnetic fields on bacterial growth rate. Phys Med Biol. 26:613–621.
  • Adair RK. 1991. Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Physical Rev A. 43:1039–1048.
  • Adey WR, Bawin S. 1982. Binding and release of brain calcium by low-level electromagnetic fields: a review. Radio Sci. 17 5S: 149S–157S.
  • Adey WR, Bawin FM, Lawrence AF. 1982. Effects of weak, amplitude-modulated fields on calcium efflux from awake cat cerebral cortex. Bioelectromagnetics. 3:295–308.
  • Alberto D, Busso I, Crotti G, Gandini M, Garfagnini R, Giudici P, Gnesi I, . 2008. Effects of static and low-frequency alternating magnetic fields on the ionic electrolytic currents of glutamic acid aqueous solution. Electromagnetic Biology and Medicine. 27:25–39.
  • Andocs G, Szasz O, Szasz A. 2009. Oncothermia treatment of cancer: from the laboratory to the clinic. Electromagn Biol Med. 28:148–165.
  • Astumian RD, Robertson B. 1989. Nonlinear effect of an oscillating electric field on membrane proteins. J Chem Phys. 72:4891–4899.
  • Astumian RD, Weaver JC, Adair RK. 1995. Rectification and signal averaging of weak electric fields by biological cells. Proc Natl Acad Sci USA. 92 9: 3740–3743.
  • Ayrapetyan R, Grigorian K, Avanesyan A, Stamboltsian K. 1994. Magnetic field alter electrical properties of solutions and their physiological effects. Bioelectromagnetics. 15:133–142.
  • Baker B, Spadaro J, Marino A, Becker RO. 1974. Electrical stimulation of articular cartilage regeneration. Ann N Y Acad Sci. 238:491–499.
  • Baker B, Becker RO, Spadaro J. 1974. A study of electrochemical enhancement of articular cartilage repair. Clin Orthop Relat Res. 102:251–267.
  • Barbieri M. 2004. The definition of information and meaning two possible boundaries between physics and biology. Riv Biol. 97:91–109.
  • Barnes FS. 1996. Effect of electro-magnetic field on the rate of chemical reactions. Biophysics. 41:801–880.
  • Basset CAL. 1993. Beneficial effects of electromagnetic fields. J Cell Biochem. 51:387–393.
  • Basset CAL, Pawluk RJ, Pilla AA. 1974. Augmentation of bone repair by inductively coupled electromagnetic field. Science. 184:575–579.
  • Becker RO. 1967. The electrical control of growth processes. Med Times. 96:657–669.
  • Becker RO. 1972. Stimulation of partial limb regeneration in rats. Nature. 235:109–111.
  • Becker RO. 1987. Electromagnetism and the revolution in medicine. Acupunct Electrother Res. 12 1: 75–79.
  • Becker RO. 2002. Induced dedifferentiation: a possible alternative to embryonic stem cell transplant. NeuroRehabilitation. 17 1: 23–31.
  • Becker RO. 2004. Exploring new horizons in electromedicine. J Altern Complement Med. 10 1: 17–18.
  • Becker RO, Bachman CH. 1965. Bioelectric effects in tissue. Clin Orthop Relat Res. 43:251–253.
  • Becker RO, Brown FM. 1965. Photoelectric effects in human bone. Nature. 206 991: 1325–1328.
  • Becker RO, Murray DG. 1970. The electrical system regulating fracture healing in amphibians. Clin Orthop Relat Res. 73:169–198.
  • Becker RO, Spadaro JA. 1972. Electrical stimulation of partial limb regeneration in mammals. Bull N Y Acad Med. 48 4: 627–641.
  • Becker RO, Chapin S, Sherry R. 1974. Regeneration of the ventricular myocardium in amphibians. Nature. 248 444: 145–147.
  • Belova NA, Lednev VV. 2000. Activation and inhibition of gravitropic response in plants by weak combined magnetic fields. Biophysics. 45:1069–1074.
  • Belyaev IY, Alipov ED. 2001. Frequency-dependent effects of ELF on chromatin conformation in Escherichia coli cells and human lymphocytes. Biophys Biochim Acta. 1526:269–276.
  • Belyaev IY, Alipov YD, Harms-Ringdahl M. 1997. Effects of zero magnetic field on the conformation of chromatin in human cells. Biophys Biochim Acta. 1336:465–473.
  • Berg H. 1993. Electrostimulation of cell metabolism by low frequency electric and electromagnetic fields. Biolectrochem Bioener. 31:1–25.
  • Berg H, Zang L. 1993. Electrostimulation in cell biology by low frequency electromagnetic fields. Electro Magnetobiol. 12 2: 147–163.
  • . 1999. Electricity and magnetism in biology and medicineBersani F. New York: Kluwer Academic/Plenum Publishers.
  • Bertalanffy Lvon. 1949. Open systems in physics and biology. Nature. 163:384.
  • Bertalanffy Lvon. 1950. The theory of open systems in physics and biology. Science. 111:23–29.
  • Bier M. 2005. Gauging the strengths of power frequency fields against membrane electrical noise. Bioelectromagnetics. 26:595–609.
  • Bistolfi F. 1987. Classification of possible targets of interaction of magnetic fields with living matter. Panminerva Med. 29 1: 71–73.
  • Bistolfi F. 1990. The bioelectronic connectional system (BCS): a therapeutic target for nonionizing radiation. Panminerva Med. 32 1: 10–18.
  • Blackman CF, Benane SG, Rabinowitz JR, House DE, Joines WT. 1985. A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics. 6:327–337.
  • Blackman CF, Kinney LS, House DE, Joines WT. 1989. Multiple power-density windows and their possible origin. Bioelectromagnetics. 10:115–128.
  • Blackman C, Benane S, House D, Elliot D. 1990. Importance of alignment between local DC magnetic field and an oscillating magnetic field in response of brain tissue in vitro and in vivo. Bioelectromagnetics. 11:159–167.
  • Blackman CF, Benane S, House D. Evidence for direct effect of magnetic fields on neurite outgrowth. FASEB J. 1993a; 7:801–806.
  • Blackman CF, Benane S, House D. Frequency-dependent interference by magnetic fields of nerve growth factor-induced neurite outgrowth in PC-12 cells. Bioelectromagnetics. 1993b; 16:387–395.
  • Blackman CF, Blanchard JP, Benane SG, House DE. 1994. Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells. Bioelectromagnetics. 15:239–260.
  • Blackman CF, Blanchard JP, Benane SG, House DE. 1995. The ion parametric resonance model predicts magnetic field parameters that affect nerve cells. FASEB J. 9:547–551.
  • Blackman CF, Blanchard JP, Benane SG, House DE. 1999. Experimental determination of hydrogen bandwidth for the ion parametric resonance model. Bioelectromagnetics. 20 1: 5–12.
  • Blanchard JP, Blackman CF. 1994. Clarification and application of an ion parametric resonance model for magnetic interaction with biological systems. Biolectromagnetics. 15:217–238.
  • Blank M, Soo L. 1992. Threshold for inhibition of Na/K ATPase by ELF alternating currents. Biolectromagnetics. 13:329–333.
  • Blank M, Soo L. The Na/K ATPase as a model for electromagnetic field effects on cells. Bioelectrochem Bioenerg. 1993a; 30:85–92.
  • Blank M, Soo L. The threshold for Na/K ATPase stimulation by electromagnetic fields. Bioelectroch Bioenerg. 1993b; 40:63–65.
  • Bobkova NV, Novikov VV, Medvinskaya NI, Fesenko EE. 2005. Reduction in the β-amyloid level in the brain under the action of weak combined fields in a model of Sporadic Alzheimer's disease. Biophysics. 540:52–57.
  • . 1990. Bioresonance and multiresonance therapy (BRT)Brugemann H. Brussels: Haug International Publishing.
  • Chou C-K, McDougall JA, Ahn C, Vora N. 1997. Electrochemical treatment of mouse and rat fibrosarcomas with direct current. Bioelectromagnetics. 18:14–24.
  • Cossarizza A, Monti D, Bersani F, Cadossi R, Sacchi Franceschi C. 1989. Extremely low frequency pulsed electromagnetic fields increase cell proliferation in lymphocytes from young and aged subjects. Biochem Biophys Res Commun. 160:692–698.
  • Cossarizza A, Monti D, Bersani F, Paganelli R, Montagnani G, Cadossi R, Cantini M, Franceschi C. 1989. Extremely low frequency pulsed electromagnetic fields increase interleukin-2 (IL-2) and IL-2 receptor expression in lymphocytes from old subjects. FEBS Lett. 248:141–144.
  • Cossarizza A, Angioni S, Petraglia F, Genazzoni AR, Monti D, Capri M, Bersani F, . 1993. Exposure to low frequency pulsed electromagnetic fields increases interleukin-1 and interleukin-6 production by human peripheral blood mononuclear cells. Exp Cell Res. 204:385–387.
  • Del Giudice E, Preparata G. 1995. Coherent dynamics in water as a possible explanation of biological membranes formation. J Biol Phys. 20:105–116.
  • Del Giudice E, Galimberti A, Gamberane L, Preparata G. 1995. Electrodynamical coherence in water: a possible origin of the tetrahedral coordination. Mod Phys Lett B. 9:953–961.
  • Del Giudice E, Fleischmann M, Preparata G, Talpo G. 2002. On the ‘unreasonable’ effects of ELF magnetic fields upon a system of ions. Bioelectromagnetics. 23:522–530.
  • Diebert MC, McLeod BR, Smith SD, Liboff AR. 1994. Ion resonance electromagnetic field stimulation of fracture healing in rabbits with a fibular ostectomy. J Orthopedic Res. 12:878–885.
  • . 2002. What is life? Scientific approach and philosophical positionsDürr HP, Popp FA, Schommers W. Singapore: World Scientific Publishing.
  • Eichwald CF, Kaiser F. 1993. Model for receptor-controlled cytosolic calcium oscillations and for external influences on the signal pathway. Biophys J. 65:2047–2058.
  • Eichwald CF, Walleczek J. Model for magnetic field effects on radical pair recombination in enzyme kinetics. Biophys J. 1996a; 71:623–631.
  • Eichwald CF, Walleczek J. Activation-dependent and biphasic electromagnetic field effects: model based on cooperative enzyme kinetics in cellular signalling. Bioelectromagnetics. 1996b; 17:427–435.
  • Eichwald CF, Walleczek J. 1997. Low-frequency-dependent effects of oscillating magnetic field effects of oscillating magnetic fields on radical pair recombination in enzyme kinetics. J Chem Phys. 107:4943–4950.
  • Eichwald CF, Walleczek J. 1998. Magnetic field perturbations as a tool for controlling enzyme-regulated and oscillatory biochemical reactions. Biophys Chem. 74:209–224.
  • Figiel GS, Epstein C, McDonald WM, Amazon-Leece J, Figiel L, Saldivia A, Glover S. 1998. The use of rapid-rate transcranial magnetic stimulation (rTMS) in refractory depressed patients. J Neuropsychiatr Clin Neurosci. 10:20–25.
  • Fitzsimmons RJ, Ryaby JT, Mohan S, Magee FP, Baylink DG. 1995. Combined magnetic fields increase insulin-like growth factor II in TE-85 human osteosarcoma bone cell cultures. Endocrinology. 136:3100–3106.
  • Foletti A, Lisi A, Ledda M, De Carlo F, Grimaldi S. 2009. Cellular ELF signals as a possible tool in informative medicine. Electromagnetic Biol Med. 28 1: 71–79.
  • . 1988. Biological coherence and response to external stimuliFröhlich H. Berlin/Heidelberg: Springer Verlag.
  • . 1983. Coherent excitations in biological systemsFröhlich H, Kremer F. Berlin/Heidelberg: Springer Verlag.
  • Fuchs EC, Woisetschlager J, Gatterer K, Maiser E, Pecnic R, Holler G, Eisenkolbl H. 2007. The floating water bridge. J Phys D: Appl Phys. 40:6112–6114.
  • Gaetani R, Ledda M, Barile L, Cimenti I, De Carlo F, Forte E, Ionta V, . 2009. Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic field. Cardiovasc Res. 82:411–420.
  • Galland P, Pazur A. 2005. Magnetoreception in plants. J Plant Res. 118:371–389.
  • George MS, Wassermann EM, Williams WA, Callahan A, Ketter TA, Basser P, Hallett M, Post RM. 1995. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport. 2:1853–1856.
  • Giuliani L, Grimaldi S, Lisi A, D'Emilia E, Bobkova N, Zhadin M. 2008. Action of combined magnetic fields on aqueous solution of glutamic acid: the further development of investigations. Biomagn Res Technol. 6 1 doi:10.1186/1477-044X-6-1.
  • Giuliani L, D'Emilia E, Lisi A, Grimaldi S, Foletti A, Del Giudice E. 2009. The floating water bridge under strong electric potential. Neural Netw World. 19 4: 393–398.
  • Grimaldi S, Pasquali E, Barbanato L, Lisi A, Santoro N, Serafina A, Pozzi D. 1997. Exposure to a 50 Hz electromagnetic field induces activation of the Epstein-Barr virus genome in latently infected human lymphoid cells. J Environ Pathol Toxicol Oncol. 16:205–207.
  • Hoelzel R, Lamprecht J. 1994. Electromagnetic fields around biological cells. Neural Network World. 4:327–337.
  • Hoelzel R, Lamprecht J. 1995. Optimizing an electronic detection system for radiofrequency oscillations in biological systems. Neural Network World. 5:763–774.
  • Islamov BI, Funtikov VA, Bobrovski RV, Gotovskii YV. 1999. Bioresonance therapy in rheumatoid arthritis and heat shock proteins. Bull Exp Biol Med. 128 11: 525–528.
  • Islamov BI, Balabanova RM, Funtikov VA, Gotovskii YV, Meizerov EE. 2002. Effect of bioresonance therapy on antioxidant system in lymphocytes in patients with rheumatoid arthritis. Bull Exp Biol Med. 134 3: 248–250.
  • Jelinek F, Pokorny J, Saroch J, Trkal V, Hasek J, Palan B. 1999. Microelectronic sensors for measurement of electromagnetic fields of living cells and experimental results. Biolectrochem Bioenerg. 48:261–266.
  • Kaiser F. 1996. External signals and internal oscillation dynamics: biophysical aspects and modelling approaches for interactions of weak electromagnetic fields at the cellular level. Bioelectrochem Bioeng. 41:3–18.
  • Kirson ED, Dbaly V, Tovarys F, Vymazal J, Soustiel JF, Itzhaki A, Mordechovich D, . 2007. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci USA. 104:10152–10157.
  • Kirson ED, Giladi M, Gurvich Z, Itzhaki A, Mordechovich D, Schneiderman RS, Wasserman Y, . 2009. Alternating electric fields (TT fields) inhibit metastatic spread of solid tumors to the lungs. Clin Exp Metastasis. 26:633–640.
  • Lednev VV. 1991. Possible mechanism for the influence of weak magnetic field on biological system. Bioelectromagnetics. 12:71–75.
  • Liboff AR. 1985. Geomagnetic cyclotron resonance in living cells. J Biol Phys. 13:99–102.
  • Liboff AR. 1994. The electromagnetic field as a biological variable. In: Frey AH. editors. On the nature of electromagnetic field interactions. Austin: R.G. Landis.
  • Liboff AR. 1997. Electric-field ion cyclotron resonance. Biolectromagnetics. 18 1: 85–87.
  • Liboff AR. 2002. Comment on ‘Extremely low frequency magnetic fields can either increase or decrease analgesia in the land snail depending on field and light conditions”. Bioelectromagnetics. 23:406–407.
  • Liboff AR. 2004. Toward an electromagnetic paradigm for biology and medicine. J Altern Complement Med. 10 1: 41–47.
  • Liboff AR. 2006. The on cyclotron resonance hypothesis. In: Greenebaum B, Barnes F. editors. Handbook of Bioelectromagnetism. Boca Raton: CRC Press.
  • Liboff AR. 2007. Local and holistic electromagnetic therapies. Electromagn Biol Med. 26 4: 315–325.
  • Liboff AR. 2010. A role for the geomagnetic field in cell regulation. Electromagn Biol Med. 29:105–112.
  • Liboff AR. 2012. Electromagnetic vaccination. Med Hypotheses. 79 3: 331–333.
  • Liboff AR, Jenrow KA. 2002. Physical mechanisms in neuroelectromagnetic therapies. Neuro Rehabilitation. 17:9–22.
  • Liboff AR, Rozek RJ, Sherman ML, McLeod BR, Smith SD. 1987. Ca2+-45 cyclotron resonance in human lymphocytes. Electromag Biol Med. 6:13–22.
  • Liboff AR, Smith S, Mc Leod B. 1995. Comments on “Clarification and application of an Ion Parametric Resonance model for magnetic field interactions with biological systems,” by Blanchard and Blackman. Biolectromagnetics. 16:272–273.
  • Liburdy RP. 1992. Calcium signalling in lymphocytes and ELF fields: evidence for an electric field metric and a site of interaction involving calcium ion channels. FEBS Lett. 301:53–59.
  • Lisi A, Ledda M, Rosola E, Pozzi D, D'Emilia E, Giuliani L, Foletti A, . 2006. Extremely low frequency electromagnetic field exposure promotes differentiation of pituitary corticotrope-derived AtT20 D16V cells. Bioelectromagnetics. 27:641–651.
  • Lisi A, Foletti A, Ledda M, Rosola E, Giuliani L, D'Emilia E, Grimaldi S. 2006. Extremely low frequency 7 Hz 100 μT electromagnetic radiation promotes differentiation in the human epithelial cell line HaCaT. Electromagn Biol Med. 25 4: 269–280.
  • Lisi A, Rieti S, Criceti A, Flori A, Generosi R, Luce M, Perfetti P, . 2006. ELF non-ionizing radiation changes the distribution of the inner chemical functional groups in human epithelial cell (HaCaT) culture. Electromagn Biol Med. 25 4: 281–289.
  • Lisi A, Ledda M, De Carlo F, Pozzi D, Messina E, Gaetani R, Cimenti I, . 2008. Ion cyclotron resonance as a tool in regenerative medicine. Electromagn Biol Med. 27:127–133.
  • Lisi A, Ledda M, De Carlo F, Foletti A, Giuliani L, D'Emilia E, Grimaldi S. 2008. Ion cyclotron resonance (ICR) transfers information to living systems: effects on human epithelial cell differentiation. Electromagn Biol Med. 27 3: 230–240.
  • Lyle DB, Wang X, Ayotte RD, . 1991. Calcium uptake by leukemic and normal T-lymphocytes exposed to low frequency magnetic fields. Bioelectromagnetics. 12:145–155.
  • Mae-Wan Ho. 1998. The rainbow and the worm. The physics of the organisms. Singapore: World Scientific Publishing.
  • Markin VS, Tsong TY. Frequency and concentration windows for the electric activation of a membrane active transport system. Biophys J. 1991a; 59 6: 1308–1316.
  • Markin VS, Tsong TY. Reversible mechanosensitive ion pumping as a part of mechanoelectric transduction. Biophys J. 1991b; 59 6: 1317–1324.
  • Markin VS, Tsong TY. Electroconformational coupling for ion transport in an oscillating electric field: rectification versus active pumping. Bioelectrochem Bioenerg. 1991c; 26:251–276.
  • Matteucci C. 1834. Memoire sur la l'electrite animal. Annales de Chimie et de Physique. 56:449–443.
  • McLeod BR, Liboff AR. 1986. Dynamic characteristics of membrane ions in multifield configurations of low-frequency electromagnetic radiation. Bioelectromagnetics. 7:177–189.
  • Novikov VV, Novikov GV, Fesenko EE. 2009. Effect of weak combined static and extremely low-frequency alternating magnetic fields on tumor growth in mice inoculated with the Ehrlich ascites carcinoma. Bioelectromagnetics. 30:343–351.
  • Pazur A. 2004. Characterisation of weak magnetic field effects in an aqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltammetry. Biomagn Res Technol. 2 8 doi:10.1186/1477-044X-2-8.
  • Pelling AE, Sehati S, Gralla EB, Valentine JS, Gimzewski JK. 2004. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science. 305 5687: 1147–1150.
  • Pelling AE, Sehati S, Gralla EB, Gimzewski JK. 2005. Time dependence of the frequency and amplitude of the local nanomechanical motion of yeast. Nanomedicine. 1 2: 178–183.
  • Pelling AE, Veraitch FS, Pui-Ke Chu C, Nicholls BM, Hemsley AL, Mason C, Horton MA. 2007. Mapping correlated membrane pulsations and fluctuations in human cells. J Mol Recognit. 20 6: 467–475.
  • Pohl HA. 1980. Oscillating fields about growing cells. Int J Quant Chem Quant Biol Symp. 7:411–431.
  • Pohl HA. 1981. Natural electrical RF oscillation from cells. J Bioenerg Biomembr. 13:149–169.
  • Pokorny J. 1999. Conditions for coherent vibrations in the cytoskeleton. Bioelectrochem Bioenerg. 48:267–271.
  • Pokorny J. 2001. Endogenous electromagnetic forces in living cells: implications for transfer of reaction components. Electro Magnetobiol. 20 1: 59–73.
  • Pokorny J, Wu TM. 1998. Biophysical aspects of coherence and biological order. Berlin/Heidelberg/New York: Springer Verlag.
  • Pokorny J, Jelinek F, Trkal V. 1998. Electric field around microtubules. Bioelectrochem Bioenerg. 45:239–245.
  • . 2003. Integrative biophysics. BiophotonicsPopp FA, Beloussov L. Dordrecht/Boston/London: Kluwer Academic Publishers.
  • Preparata G. 1995. QED coherence in matter. Singapore: World Scientific Publishing.
  • Presman A. 1970. Electromagnetic fields and life. New York: Plenum Press.
  • Raggi F, Vallesi G, Rufini S, Gizzi S, Ercolani E, Rossi B. 2008. ELF magnetic therapy and oxidative balance. Electromagn Biol Med. 27:325–339.
  • Rapp PE. 1979. An atlas of cellular oscillators. J Exp Biol. 81:281–306.
  • Rapp PE. 1980. The origin and function of cellular oscillations. Cell Biol Int Rep. 4 2: 227–229.
  • Regling C, Brueckner C, Kimura JH, Liboff AR (2002). Evidence for ICR magnetic field effects on cartilage and bone development in embryonic chick bone explants. 48th annual meeting, Orthopedic Research Society, Dallas.
  • Ross SM. 1990. Combined DC and ELF magnetic fields can alter cell proliferation. Bioelectromagnetics. 11:27–36.
  • Rossi EW, Corsetti MT, Sukkar S, Poggi C. 2007. Extremely low frequency electromagnetic fields prevent chemotherapy induced myelotoxicity. Electromagn Biol Med. 26:277–281.
  • Rozek RJ, Sherman ML, Liboff AR, McLeod BR, Smith S, D. 1987. Nifedipine is an antagonist to cyclotron resonance enhancement of 45Ca incorporation in human lymphocytes. Cell Calcium. 8:413–427.
  • Rubik B. 1995. Energy medicine and the unifying concept of information. Altern Ther Health Med. 1 1: 34–39.
  • Sahu S, Hirata K, Fujuita D, Ghosh S, Bandyopadhyay A. Radio-frequency induced ultrafast assembly of microtubules and their length-independent electronic properties. Nat Matter. 2012 (in press).
  • Santoro N, Lisi A, Pozzi D, Pasquali E, Serafino A, Grimaldi S. 1997. Effect of extremely low frequency (ELF) magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji). Biochim Biophys Acta. 1357:281–290.
  • Sarimov R, Markova E, Johansson, Jenssen D, Belyaev I. 2005. Exposure to ELF magnetic field tuned to Zinc inhibits growth of cancer cells. Bioelectromagnetics. 26:631–638.
  • Sarimov R, Alipov ED, Belyaev IY. 2011. Fifty hertz magnetic fields individually affect chromatin conformation in human lymphocytes: dependence on amplitude, temperature, and initial chromatin state. Bioelectromagnetics. 32:570–579.
  • Schrodinger E. 1944. What is life? The physical aspect of the living cellCambridge: Cambridge University Press.
  • Smith SD, McLeod BR, Liboff AR, Cooksey K. 1987. Calcium cyclotron resonance and diatom motility. Bioelectromagnetics. 8:215–227.
  • Smith SD, Liboff AR, McLeod BR. 1991. Effects of resonant magnetic fields on chick femoral development in vitro. Electromag Biol Med. 10:81–89.
  • Smith SD, Liboff AR, McLeod BR. 1992. Effects of resonance tuned magnetic field on N-18 neuroblastoma cells. In: Allen M, Cleary S, Sowers AE, Shillady DD. editors. Charge and field effects in biosystems-3. Boston: Birkhauser.
  • Smith SD, McLeod BR, Liboff AR. 1993. Effects of CR-tuned 60 Hz magnetic fields on sprouting and early growth of Raphanus sativus. Bioelectrochem Bioenerg. 32:67–76.
  • Smith SD, McLeod BR, Liboff AR. 1995. Testing the ion cyclotron resonance theory of electromagnetic field interaction with odd and even harmonic tuning for cations. Bioelectrochem Bioenerg. 38:161–167.
  • Stuart CIJ. Physical models of biological information and adaptation. J Theor Biol. 1985a; 113:441–454.
  • Stuart CIJ. Bio-informational equivalence. J Theor Biol. 1985b; 113:611–636.
  • Thomas JR, Schrot J, Liboff AR. 1986. Low-intensity magnetic fields alter operant behaviour in rats. Bioelectromagnetics. 7:349–357.
  • Tsong TY. 1990. Electrical modulation of membrane proteins: enforced conformational oscillations and biological energy and signal transduction. Annu Rev Biophys Biophys Chem. 19:83–106.
  • Tsong TY. 1992. Molecular recognition and processing of periodic signals in cells: study of activation of membrane ATPases by alternating electric fields. Biochim Biophys Acta. 1113 1: 53–70.
  • Tsong TY, Liu DS, Chauvin F, Astumian RD. 1989. Resonance electroconformational coupling: a proposed mechanism for energy and signal transductions by membrane proteins. Biosci Rep. 9 1: 13–26.
  • Vincze G, Szasz N, Szasz A. 2005. On the thermal noise limit of cellular membranes. Bioelectromagnetics. 26:28–35.
  • Vincze G, Szasz A, Liboff AR. 2008. New theoretical treatment of ion resonance phenomena. Bioelectromagnetics. 29 5: 380–386.
  • Volodyaev I. 2005. Bridging the gap between physics and biology. Riv Biol. 98 2: 237–264.
  • Walleczek J. 1992. Electromagnetic field interactions with cells of the immune system: the role of calcium signaling. FASEB J. 6:3177–3185.
  • Weaver JC, Astumian RD. 1990. The response of living cells to very weak magnetic fields: the thermal noise limit. Science. 247:459–462.
  • Yost MG, Liburdy RP. 1992. Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Lett. 296:117–122.
  • . 2008. Physical biology: from atoms to medicineZewail AhmedH. London: Imperial College Press.
  • Zhadin MN. 1996. Effect of magnetic fields on the motion of an ion in a macromolecule: theoretical analysis. Biophysics. 41:843–860.
  • Zhadin MN. 1998. Combined action of static and alternating magnetic fields on ion motion in a macromolecule: theoretical aspects. Bioelectromagnetics. 19:279–292.
  • Zhadin MN. 2001. Review of Russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics. 22 1: 27–45.
  • Zhadin MN, Barnes F. 2005. Frequency and amplitude windows at combined action of DC and low frequency AC magnetic fields on ion thermal motion in a macromolecule: theoretical analysis. Bioelectromagnetics. 26:323–330.
  • Zhadin MN, Fesenko EE. 1990. Ion cyclotron resonance in biomolecules. Biomed Sci. 1 3: 245–250.
  • Zhadin MN, Giuliani L. 2006. Some problems in modern bioelectromagnetics. Electromagn Biol Med. 25:227–243.
  • Zhadin MN, Novikov VV, Barnes FS, Pergola NF. 1998. Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution. Bioelectromagnetics. 19:41–45.
  • Zhadin MN, Deryugina ON, Pisachenko TM. 1999. Influence of combined DC and AC magnetic fields on rat behavior. Bioelectromagnetics. 20:378–386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.