181
Views
5
CrossRef citations to date
0
Altmetric
Research Article

A static magnetic field attenuates lipopolysaccharide-induced neuro-inflammatory response via IL-6-mediated pathway

, , , , , , & show all
Pages 132-138 | Received 14 Dec 2012, Accepted 08 Apr 2013, Published online: 19 Jun 2013

References

  • Aldinucci, C., Garcia, J. B., Oalmi, M., et al. (2003). The effect of strong static magnetic field on lymphocytes. Bioelectromagnetics. 24:109–117
  • Arendash, G. W., Sanchez-Ramos, J., Mori, T., et al. (2010). Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer's disease mice. J. Alzheimers Dis. 19:191–210
  • Bannerman, D. D., Goldblum, S. E. (1999). Direct effects of endotoxin on the endothelium: barrier function and injury. Lab. Invest. 79:1181–1199
  • Brehmer, F., Bendix, I., Prager, S., et al. (2012). Interaction of inflammation and hyperoxia in a rat model of neonatal white matter damage. PLoS One 7:e49023, 1--13
  • Cameron, B., Landreth, G. E. (2010). Inflammation, microglia, and Alzheimer's disease. Neurobiol. Dis. 37:503–509
  • Chiu, K. H., Ou, K. L., Lee, S. Y., et al. (2007). Static magnetic fields promote osteoblast-like cells differentiation by decreasing the proliferation effects of growth factors. Ann. Biomed. Eng. 35:1932–1939
  • Cunningham, C., Wilcockson, D. C., Campion, S., et al. (2005). Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J. Neurosci. 25:9275–9284
  • Dai, M., Reznik, S. E., Spray, D. C., et al. (2010). Desruisseaux MS. Persistent cognitive and motor deficits after successful antimalarial treatment in murine cerebral malaria. Microbes Infect. 12:1198–1207
  • Del Rey, A., Randolf, A., Wildmann, J., et al. (2009). Re-exposure to endotoxin induces differential cytokine gene expression in the rat hypothalamus and spleen. Brain Behav. Immun. 23:776–783
  • De Nicola, M., Cordisco, S., Cerella, C., et al. (2006). Magnetic fields protect from apoptosis via redox alteration. Ann. New York Acad. Sci. 1090:59–68
  • Dziarski, R., Tapping, P. I., Tobias, P. S. (1998). Binding of bacterial peptidoglycan to CD14. J. Biol. Chem. 73:8680–8690
  • Erta, M., Quintana, A., Hidalgo, J. (2012). Interleukin-6, a major cytokine in the central nervous system. Int. J. Biol. Sci. 8:1254–1266
  • Fitting, C., Dhawan S., Cavaillon J. M. (2004). Compartmentalization of tolerance to endotoxin. J. Infect. Dis. 189:1295–1303
  • Gayle, D. A., Ling, Z., Tong, C., et al. (2002). Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor- α, interleukin-1β, and nitric oxide. Develop Brain Res. 133:27–35
  • Gasparini, L., Ennio, O., Wenk, G. L. (2004). Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s Disease: old and new mechanisms of action. J. Neurochem. 91:521–536
  • Godbout, J. P., Chen, J., Abraham, J., et al. (2005). Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J. 19:1329–1331
  • Hirsch, E. C., Hunot, S. (2009). Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8:382–397
  • Holmes, C., Cunningham, C., Zotova, E., et al. (2009). Systemic inflammation and disease progression in Alzheimer disease. Neurol. 73:768–774
  • Huang, Y., Henry C. J., Dantzer, R., et al. (2008). Exaggerated sickness behavior and brain proinflammatory cytokine expression in aged mice in response to intracerebroventricular lipopolysaccharide. Neurobiol. Aging 29:1744–1753
  • Jiang, Q., Akashi, S., Miyake, K. (2000). Lipopolysaccharide induces physical proximity between CD14 and Toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J. Immunol. 165:2163–2167
  • Kielian, T. (2006). Toll-like receptors in central nervous system glial inflammation and homeostasis. J. Neurosci. Res. 83:711–730
  • Lin, C. T., Lee. S. Y., Chen, C. Y., et al. (2008a). Long-term continuous exposure to static magnetic field reduces lipopolysaccharide-induced cytotoxicity of fibroblasts. Int. J. Radiat. Biol. 84:219–226
  • Lin, S. L., Chang, W. J., Chiu, K. H., et al. (2008b). Mechanobiology of MG63 osteoblast-like cells adaptation to static magnetic forces. Electromag. Biol. Med. 27:55–64
  • Lin, S. L., Chang, W. J., Lin, Y. S., et al. (2009). Static magnetic field attenuates mortality rate of mice by increasing the production of IL-1 receptor antagonist. Int. J. Radiat. Biol. 85:633–640
  • Ling, Z., Zhu, Y., Tong, C. W., et al. (2006). Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Exp. Neurol. 199:499–512
  • Liu, B. (2006). Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson’s disease. AAPS J. 8:E606–E621
  • McGeer, E. G., Klegeris, A., McGeer, P. L. (2005). Inflammation, the complement system and the diseases of aging. Neurobiol. Aging 26:94–97
  • Marsh, B., Stevens, S. L., Packard, A. E. B., et al. (2009). Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J. Neurosci. 29:9839–9849
  • Medina, F. J., Túnez, I. (2010). Huntington’s disease: the value of transcranial meganetic stimulation. Curr. Med. Chem. 17:2482–2491
  • Moon, D. O., Kim, K. C., Jin, C. Y., et al. (2007a). Inhibitory effects of eicosapentaenoic acid on lipopolysaccharide-induced activation in BV2 microglia. Int. Immunopharmacol. 7:222–229
  • Moon, D. O., Choi, Y. H., Kim, N. D., et al. (2007b). Anti-inflammatory effects of beta-lapachone in lipopolysaccharide-stimulated BV2 microglia. Int. Immunopharmacol. 7:506–514
  • Nava, F., Calapai, G., Facciola, G., et al. (1997). Effects of interleukin-10 on water intake, locomotory activity, and rectal temperature in rat treated with endotoxin. Int. J. Immunopharmacol. 19:31–38
  • Nguyen, M. D., Julien, J. P., Rivest, S. (2006). Innate immunity: The missing link in neuroprotection and neurodegeneration? Nat. Rev. Neurosci. 3:216–227
  • Nuccitelli, S., Cerella, C., Cordisco, S., et al. (2006). Hyperpolarization of plasma membrane of tumor cells sensitive to antiapoptotic effects of magnetic fields. Ann. New York Acad. Sci. 1090:217–225
  • Oberbeck, R., Kromm, A., Exton, M. S., et al. (2003). Pavlovian conditioning of endotoxin-tolerance in rats. Brain Behav. Immun. 17:20–27
  • Ouchi, Y., Yoshikawa, E., Sekine, Y., et al. (2005). Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann. Neurol. 57:168–175
  • Pang, Y., Fan, L. W., Zheng, B., et al. (2012). Dexamethasone and betamethasone protect against lipopolysaccharide- induced brain damage in neonatal rats. Pediatr. Res. 71:552–558
  • Perry, V. H., Newman, T. A., Cunningham, C. (2003). The impact of systemic infection on the progression of neurodegenerative disease. Nat. Rev. Neurosci. 4:103–112
  • Qin, L., Wu, X., Block, M. L., et al. (2007). Crews FT. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 55:453–462
  • Roman, A., Vetulani, J., Nalepa, I. (2002). Effect of combined treatment with paroxetine and transcranial magnetic stimulation (TMS) on the mitogen-induced proliferative response of rat lymphocytes. Pol. J. Pharmacol. 54:633–639
  • Roman, A., Zyss, T., Nalepa, I. (2005). Magnetic field inhibits isolated lymphocytes' proliferative response to mitogen stimulation. Bioelectromagnetics. 26:201–206
  • Rosen, A. D. (2003). Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem. Biophys. 39:163–173
  • Salerno, S., Lo Casto, A., Caccamo, N., et al. (1999). Static magnetic fields generated by a 0.5 T MRI unit affects in vitro expression of activation markers and interleukin release in human peripheral blood mononuclear cells (PBMC). Int. J. Rad. Biol. 75:457–463
  • Tasset, I., Medina, F. J., Jimena, I., et al. (2012). Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington's disease rat model: effects on neurotrophic factors and neuronal density. Neurosci. 209:54–63
  • Tasset, I., Pérez-Herrera, A., Medina, F. J., et al. (2013). Extremely low-frequency electromagnetic fields activate the antioxidant pathway Nrf2 in a Huntington's disease-like rat model. Brain Stimul. 6:84–86
  • Tapia-Gonzalez, S., Carrero, P., Pernia, O., et al. (2008). Selective oestrogen receptor (ER) modulators reduce microglia reactivity in vivo after peripheral inflammation: potential role of microglial ERs. J. Endocrinol. 198:219–230
  • Túnez, I., Drucker-Colín, R., Jimena, I., et al. (2006). Transcranial magnetic stimulation attenuates cell loss and oxidative damage in the striatum induced in the 3-nitropropionic model of Huntington's disease. J. Neurochem. 97:619–630
  • Vallès, A., Martí, O., Armario, A. (2005). Mapping the areas sensitive to long-term endotoxin tolerance in the rat brain: a c-fos mRNA study. J. Neurochem. 93:1177–1188
  • Wang, Z., Sarje, A., Che, P. L., et al. (2009). Moderate strength (0.23–0.28 T) static magnetic fields (SMF) modulate signaling and differentiation in human embryonic cells. BMC Genomics. 10:356
  • Wang, Z., Che, P. L., Du, J., et al. (2010). Static magnetic field exposure reproduces cellular effects of the Parkinson’s disease drug candidate ZM241385. PLoS ONE. 5:e13883
  • Weinberger, A., Nyska, A., Giler, S. (1996). Treatment of experimental inflammatory stnovitis with continuous magnetic field. Isr. J. Med. Sci. 32:1197–1201
  • Woodroofe, M. N., Sarna, G. S., Wadhwa, M., et al. (1991). Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J. Neuroimmunol. 33:227–236
  • Wuchert, F., Ott, D., Murgott, J., et al. (2008). Rat area postrema microglial cells act as sensors for the toll-like receptor-4 agonist lipopolysaccharide. J. Neuroimmunol. 204:66–74
  • Xue, M., Del Bigio, M. R. (2005). Immune pre-activation exacerbates hemorrhagic brain injury in immature mouse brain. J. Neuroimmunol. 165:75–82

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.