258
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Influence of pulsed electromagnetic and pulsed vector magnetic potential field on the growth of tumor cells

, , , , &
Pages 190-197 | Received 17 Dec 2012, Accepted 14 Apr 2013, Published online: 19 Jun 2013

References

  • Adey, W. R. (1993). Biological effects of electromagnetic fields. J. Cell. Biochem. 51:410–416
  • Aharonov, Y., Bohm, D. (1959). Significance of electromagnetic potentials in quantum theory. Phys. Rev. 115:485–491
  • Amara, S., Douki, T., Ravanat, J.L., et al. (2007). Influence of a static magnetic field (250 mT) on the antioxidant response and DNA integrity in THP1 cells. Phys. Med. Biol. 52:889–898
  • Coleman, M. P., Alexe, D. M., Albreht, T., McKee, M. (2008). Responding to the Challenge of Cancer in Europe. Ljubljana, Slovenia: Institute of Public Health of the Republic of Slovenia. Available from: http://www.euro.who.int/__data/assets/pdf_file/0011/97823/E91137.pdf (accessed 17 Dec 2012)
  • De Nicola, M., Cordisco, S., Cerella, C., et al. (2006). Magnetic fields protect from apoptosis via redox alteration. Ann. NY Acad. Sci. 1090:59–68
  • Denaro, V., Cittadini, A., Barnaba, S.A., et al. (2008). Static electromagnetic fields generated by corrosion currents inhibit human osteoblast differentiation. Spine. 33:955–959
  • Di Loreto, S., Falone, S., Caracciolo, V., et al. (2009). Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J. Cell Physiol. 219:334–343
  • Ehrenberg, W., Siday, R. E. (1949). The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. B. 62:8–21
  • Falone, S., Mirabilio, A., Carbone, M. C., et al. (2008). Chronic exposure to 50 Hz magnetic fields causes a significant weakening of antioxidant defence systems in aged rat brain. Int. J. Biochem. Cell Biol. 40:2762–2767
  • Gamboa, O. L., Gutiérrez, P. M., Alcalde, I., et al. (2007). Absence of relevant effects of 5 mT static magnetic field on morphology, orientation and growth of a rat Schwann cell line in culture. Histol. Histopathol. 22:777–780
  • Goodman, E. M., Greenebaum, B., Marron, M. T. (1995). Effects of electromagnetic fields on molecules and cells. Int. Rev. Cytol. 158:279–338
  • Hecht, K., Balzer, H. U. (1997). Biological Effects of Electromagnetic Fields on Humans in the Frequency Range of 0 to 3 GHz. Berlin, Germany: Institute for Stress Research
  • Kim, S., Im, W. S., Kang, L., et al. (2008). The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells. J. Neurosci. Methods. 174:91–96
  • Kinouchi, Y., Tanimoto, S., Ushita, T., et al. (1988). Effects of static magnetic fields on diffusion in solutions. Bioelectromagnetics. 9:159–166
  • Lin, C. T., Lee, S. Y., Chen C. Y., et al. (2008a). Long-term continuous exposure to static magnetic field reduces popolysaccharide-induced cytotoxicity of fibroblasts. Int. J. Radiat. Biol. 84:219–226
  • Lin, S. L., Chang, W. J., Chiu, K. H., et al. (2008b). Mechanobiology of MG63 osteoblast like cells adaptation to static magnetic forces. Electromagn. Biol. Med. 27:55–64
  • McLean, M., Engström, S., Holcomb, R. (2001). Magnetic field therapy for epilepsy. Epilepsy. Behav. 2:S81–S87
  • Nuccitelli, S., Cerella, C., Cordisco, S., et al. (2006). Hyperpolarization of plasma membrane of tumor cells sensitive to antiapoptotic effects of magnetic fields. Ann. NY Acad. Sci. 1090:217–225
  • Ogiue-Ikeda, M., Kotani, H., Iwasaka, M., et al. (2001). Inhibition of leukemia cell growth under magnetic fields of up to 8 T. IEEE Trans. Magn. 37:2912–2914
  • Okano, H. (2008). Effects of static magnetic fields in biology: Role of free radicals. Front Biosci. 13:6106–6025
  • Raylman, R. R., Clavo, A. C., Wahl, R. L. (1996). Exposure to strong static magnetic field slows the growth of human cancer cells in vitro. Bioelectromagnetics. 17:358–363
  • Rozanski, C., Belton, M., Prato, F. S., Carson, J. J. L. (2009). Real-time measurement of cytosolic free calcium concentration in DEM-treated HL-60 cells during static magnetic field exposure and activation by ATP. Bioelectromagnetics. 30:213–221
  • Schwenzer, N. F., Bantleon, R., Maurer, B., et al. (2007a). In vitro evaluation of magnetic resonance imaging at 3.0 Tesla on clonogenic ability, proliferation, and cell cycle in human embryonic lung fibroblasts. Invest. Radiol. 42:212–217
  • Schwenzer, N. F., Bantleon, R., Maurer, B., et al. (2007b). Detection of DNA double-strand breaks using gammaH2AX after MRI exposure at 3 Tesla: An in vitro study. J. Magn. Reson. Imaging. 26:1308–1314
  • Stolfa, S., Skorvanek, M., Stolfa, P., et al. (2007). Effects of static magnetic field and pulsed electromagnetic field on viability of human chondrocytes in vitro. Physiol. Res. 56:S45–S49
  • Tenuzzo, B., Dwikat, M., Dini, L. (2008). Static magnetic field selects undifferentiated myelomonocytes from low-glutamine concentration stimulated U937 cells. Tissue Cell. 40:177–184
  • Tenuzzo, B., Vergallo, C., Dini, L. (2009). Effect of 6 mT static magnetic field on the bcl-2, bax, p53 and hsp70 expression in freshly isolated and in vitro aged human lymphocytes. Tissue Cell. 41:169–179

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.