93
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Long-term exposure to a pulsed magnetic field (1.5 mT, 25 Hz) increases genomic DNA spontaneous degradation

, , , &
Pages 228-235 | Received 10 Jan 2013, Accepted 01 May 2013, Published online: 19 Jun 2013

References

  • Ahlbom, A., Day, N., Feychting, M., et al. (2000). A pooled analysis of magnetic fields and childhood leukaemia. Brit. J. Cancer. 83:692–698
  • Billen, D. (1990). Spontaneous DNA damage and its significance for the “Negligible Dose” controversy in radiation protection. Radiat. Res. 124:242–245
  • Cintolesi, F., Ritz, T., Kay, C. W. M., et al. (2003). Anisotropic recombination of an immobilized photoinduced radical pair in a 50-mT magnetic field: A model avian photomagnetoreceptor. Chem. Phys. 294:385–399
  • Eveson, R. W., Timmel, C. R., Brocklehurst, B., et al. (2000). The effects of weak magnetic fields on radical recombination reactions in micelles. Int. J. Radiat Biol. 76:1509–1522
  • Fatigoni, C., Dominici, L., Moretti, M., et al. (2005). Genotoxic effects of extremely low frequency (ELF) magnetic fields (MF) evaluated by the tradescantia-micronucleus assay. Environ. Toxicol. 20:585–591
  • Focke, F., Schuermann, D., Kuster, N., Schär P. (2010). DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure. Mutat. Res. 683:74–83
  • Friedl, A. A., Kiechle, M., Fellerhoff, B., Eckardt-Schupp, F. (1998). Radiation-induced chromosome aberrations in Saccharomyces cerevisiae: Influence of DNA repair pathways. Genetics. 148:975–988
  • Greenland, S., Sheppard, A. R., Kaune, W. T., et al. (2000). A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Epidemiol. 11:624–634
  • Hisamitsu, T., Narita, K., Kasahara, T., et al. (1997). Induction of apoptosis in human leukemic cells by magnetic fields. Jpn. J. Physiol. 47:307–310
  • Hoffman, C. S., Winston, F. (1987). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 57:267–272
  • International Commission on Non-Ionising Radiation Protection (ICNIRP). (2010). Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 99:818–836
  • Ivancsits, S., Diem, E., Jahn, O., Rüdiger, H. W. (2003). Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int. Arch Occup Environ Health. 76:431–436
  • Ivancsits, S., Diem, E., Pilger, A., et al. (2002). Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutat Res. 519:1–13
  • Kim, J., Ha, C. S., Lee, H. J., Song, K. (2010). Repetitive exposure to a 60-Hz time-varying magnetic field induces DNA double-strand breaks and apoptosis in human cells. Biochem. Biophys. Res. Commun. 400:739–744
  • Koyama, S., Nakahara, T., Hirose, H., et al. (2004). ELF electromagnetic fields increase hydrogen peroxide (H2O2)-induced mutations in pTN89 plasmids. Mutat. Res. 560:27–32
  • Lai, H., Singh, N. P. (2004). Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ. Health Perspect. 112:687–694
  • Laqué-Rupérez, E., Ruiz-Gómez, M. J., de la Peña, L., et al. (2003). Methotrexate cytotoxicity on MCF-7 breast cancer cells is not altered by exposure to 25 Hz, 1.5 mT magnetic field and iron(III)chloride hexahydrate. Bioelectrochemistry. 60:81–86
  • Li, S. H., Chow, K.-C. (2001). Magnetic field exposure induces DNA degradation. Biochem. Biophys. Res. Commun. 280:1385–1388
  • Liang, Y., Hannan, C. J., Chang, B. K., Schoenlein, P. V. (1997). Enhanced potency of daunorubicin against multidrug resistant subline KB-ChR-8-5-11 by a pulsed magnetic field. Anticancer Res. 17:2083–2088
  • Liu, Y., Edge, R., Henbest, K., et al. (2005). Magnetic field effect on singlet oxygen production in a biochemical system. Chem. Commun. 2:174–176
  • Luceri, C., De Filippo, C., Giovannelli, L., et al. (2005). Extremely low frequency electromagnetic fields do not affect DNA damage and gene expression profiles of yeast and human lymphocytes. Radiat. Res. 164:277–285
  • Markkanen, A., Juutilainen, J., Lang, S., et al. (2001). Effects of 50 Hz magnetic field on cell cycle kinetics and the colony forming ability of budding yeast exposed to ultraviolet radiation. Bioelectromagnetics. 22:345–350
  • McNamee, J. P., Bellier, P. V., Chauhan, V., et al. (2005). Evaluating DNA damage in rodent brain after acute 60 Hz magnetic-field exposure. Radiat. Res. 164:791–797
  • Miyagi, N., Sato, K., Rong, Y., et al. (2000). Effects of PEMF on a murine osteosarcoma cell line: Drug-resistant (P-glycoprotein-positive) and non-resistant cells. Bioelectromagnetics. 21:112–121
  • Muratori, M., Maggi, M., Spinelli, S., et al. (2003). Spontaneous DNA fragmentation is swim-up selected human spermatozoa during long term incubation. J. Androl. 24:253–262
  • Nakasono, S., Ikehata, M., Dateki, M., et al. (2008). Intermediate frequency magnetic fields do not have mutagenic, co-mutagenic or gene conversion potentials in microbial genotoxicity tests. Mutat Res. 649:187–200
  • Narita, K., Hanakawa, K., Kasahara, T., et al. (1997). Induction of apoptotic cell death in human leukemic cell line, HL-60, by extremely low frequency electric magnetic fields: Analysis of the possible mechanisms in vitro. In vivo. 11:329–336
  • Potenza, L., Cucchiarini, L., Piatti, E., et al. (2004). Effects of high static magnetic field exposure on different DNAs. Bioelectromagnetics. 25:352–355
  • Ritz, T., Thalau, P., Phillips, J. B., et al. (2004). Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature. 429:177–180
  • Ruiz-Gómez, M. J., Merino-Moyano, M. D., Cebrián-Martín, M. G., et al. (2008). No effect of 50 Hz 2.45 mT magnetic field on the potency of cisplatin, mitomycin C and methotrexate in S. cerevisiae. Electromagn Biol. Med. 27:289–297
  • Ruiz-Gómez, M. J., Ristori-Bogajo, E., Prieto-Barcia, M.I, Martínez-Morillo, M. (2010a). No evidence of cellular alterations by milliTesla-level static and 50 Hz magnetic fields on S. cerevisiae. Electromagn Biol. Med. 29:154–164
  • Ruiz-Gómez, M. J., Sendra-Portero, F., Martínez-Morillo, M. (2010b). Effect of 2.45 mT sinusoidal 50 Hz magnetic field on Saccharomyces cerevisiae strains deficient in DNA strand breaks repair. Int. J. Radiat. Biol. 86:602–611
  • Ruiz-Gómez, M. J., de la Peña, L., Prieto-Barcia, M. I., et al. (2002). Influence of 1 and 25 Hz, 1.5 mT magnetic fields on antitumor drug potency in a human adenocarcinoma cell line. Bioelectromagnetics. 23:578–585
  • Ruiz-Gómez, M. J., Martínez-Morillo, M. (2005). Enhancement of the cell-killing effect of ultraviolet-C radiation by short-term exposure to a pulsed magnetic field. Int. J. Radiat. Biol. 81:483–490
  • Ruiz-Gómez, M. J., Martínez-Morillo, M. (2009). Electromagnetic fields and the induction of DNA strand breaks. Electromagn. Biol. Med. 28:201–214
  • Ruiz-Gómez, M. J., Pastor Vega, J. M., de la Peña, L., et al. (1999). Growth modification of human colon adenocarcinoma cells exposed to a low-frequency electromagnetic field. J. Physiol. Biochem. 55:79–83
  • Ruiz-Gómez, M. J., Prieto-Barcia, M. I., Ristori-Bogajo, E., Martínez-Morillo, M. (2004). Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry. 64:151–155
  • Scarfi, M. R., Sannino, A., Perrotta, A., et al. (2005). Evaluation of genotoxic effects in human fibroblasts after intermittent exposure to 50 Hz electromagnetic fields: A confirmatory study. Radiat. Res. 164:270–276
  • Schimmelpfeng, J., Dertinger, H. (1997). Action of a 50 Hz magnetic field on proliferation of cells in culture. Bioelectromagnetics. 18:177–183
  • Siede, W., Friedl, A. A., Dianova, I., et al. (1996). The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics. 142:91–102
  • Simkó, M., Kriehuber, R., Weiss, D. G., Luben, R.A. (1998). Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics. 19:85–91
  • Till, U., Timmel, C. R., Brocklehurst, B., Hore, P.J. (1998). The influence of very small magnetic fields on radical recombination reactions in the limit of slow recombination. Chem. Phys. Lett. 298:7–14
  • Timmel, C. R., Henbest, K. B. (2004). A study of spin chemistry in weak magnetic fields. Phil. Trans. Royal Soc. Lond A. 362:2573–2589
  • Timmel, C. R., Till, U., Brocklehurst, B., et al. (1998). Effects of weak magnetic fields on free radical recombination reactions. Mol. Phys. 95:71–89
  • Vijayalaxmi, Prihoda, T. J. (2009). Genetic damage in mammalian somatic cells exposed to extremely low frequency electromagnetic fields: A meta-analysis of data from 87 publications (1990–2007). Int. J. Radiat. Biol. 85:196–213
  • Villarini, M., Moretti, M., Scassellati-Sforzolini, G., et al. (2006). Effects of co-exposure to extremely low frequency (50 Hz) magnetic fields and xenobiotics determined in vitro by the alkaline comet assay. Sci. Total Environ. 361:208–219
  • Williams, P. A., Ingebretsen, R. J., Dawson, R.J. (2006). 14.6 mT ELF magnetic field exposure yields no DNA breaks in model system Salmonella, but provides evidence of heat stress protection. Bioelectromagnetics. 27:445–450
  • Wolf, F. I., Torsello, A., Tedesco, B., et al. (2005). 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: Possible involvement of a redox mechanism. Biochim. Biophys. Acta. 1743:120–129
  • Zhang, Q. M., Tokiwa, M., Doi, T., et al. (2003). Strong static magnetic field and the induction of mutations through elevated production of reactive oxygen species in Escherichia coli soxR. Int. J. Radiat Biol. 79:281–286

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.