329
Views
21
CrossRef citations to date
0
Altmetric
Research Articles

Why are living things sensitive to weak magnetic fields?

Pages 241-245 | Received 11 Apr 2013, Accepted 06 May 2013, Published online: 05 Aug 2013

References

  • Alberto, D., Busso, L., Garfagnini, R., et al. (2008). Effects of extremely low-frequency magnetic fields on l-glutamic acid aqueous solutions at 20, 40, and 60 micro T magnetic fields. Electrom. Biol. Med. 27:241–253
  • Beason, R. C. (2005). Mechanisms of magnetic orientations in birds. Integr. Comp. Biol. 45:565–573
  • Belyaev, I. Y., Alipov, E. D. (2001). Frequency-dependent effects of ELF on chromatin conformation in Escherichia coli cells and human lymphocytes. Biophys. Biochim. Acta 1526:269–276
  • Berk, M., Dodd, S., Henry, M. (2006). Do ambient electromagnetic fields affect behavior? A demonstration of the relationship between geomagnetic storm activity and suicide. Bioelectromagnetics 27:151–155
  • Blanchard, J. P., Blackman, C. F. (1994). Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15:217–238
  • Brainard, G. C., Hanifin, J. P., Greeson, J. M., et al. (2001). Action spectrum for melatonin production in humans: evidence for a novel circadian photoreceptor. J. Neurosci. 21:6405–6412
  • Brown, F. A., Chow, C. S. (1973). Lunar correlated variations in water uptake by bean seeds. Biol. Bull. 145:265–278
  • Cashmore, A. R. (2003). Cryptochromes: enabling plants and to determine circadian time. Cell 114:537–543
  • Chapman, S. (1918). Diurnal changes of the earth’s magnetism. The Observatory 41:52–60
  • Close, J. (2012). Are stress responses to geomagnetic storms mediated by the cryptochrome compass system? Proc. Biol. Sci. 279:2081–2090
  • Cosarrizza, A., Monti, D., Bersani, F., et al. (1989). Extremely low frequency pulsed electromagnetic fields increase cell proliferation in lymphocytes from young and aged subjects. Biochem. Biophys. Res. Commun. 160:692–698
  • Del Giudice, E., Fleischmann, H., Preparata, G., Talpo, G. (2002). On the “unreasonable” effects of ELF magnetic fields upon a system of ions. Bioelectromagnetics 23:522–530
  • Dull, T., Dull, B. (1935). Correlations between disturbances in terrestrial magnetism and frequency of deaths (in German). Deutsch Med Wochensohr 61:95–97
  • Erren, T. C., Pape, H. G., Reiter, R. J., Piekarski, C. (2008). Chronodisruption and cancer. Naturwissenschaften 95:367–382
  • Fitzsimmons, R. J., Ryaby, J. T., Mohan, S., et al. (1995). Combined magnetic fields increase insulin-like growth factor II in TE-85 human osteosarcoma cell cultures. Endocrinology 136:3100–3106
  • Frankel, R. B., Blakemore R. P., Wolfe, R. S. (1979). Magnetite in freshwater magnetotactic bacteria. Science 203:1355–1356
  • Friedman, H., Becker, R. O., Bachman, C. H. (1963). Geomagnetic parameters and psychiatric hospital admissions. Nature 200:626–628
  • Gaetani, R., Ledda, M., Barile, L., et al. (2009). Differentiation of human adult cardiac stem cells expose to extremely low-frequency electromagnetic fields. Cardiovasc. Res. 82:411–420
  • Galland, P., Pazur, A. (2005). Magnetoreception in plants. J. Plant Res. 118:371–389
  • Goodman, R., Henderson, A. S. (1988). Exposure of salivary gland cells to low-frequency electromagnetic fields alters polypeptide synthesis. Proc. Natl. Acad. Sci. USA 85:3928–3932
  • Henshaw D. L., Reiter, R. J. (2005). Do magnetic fields cause increased risk of childhood leukaemia via melatonin disruption? Bioelectromagnetics 7:86–97
  • Hitchman, A. P., Lilley, F. E. M., Campbell, W. H. (1998). The quiet daily variation in the total magnetic field: global curves. Geophys. Res. Lett. 25:2007–2010
  • Jenrow, K. A., Smith C., Liboff, A. R. (1995). Weak ELF fields and regeneration in the planarian Dugesia tigrina. Bioelectromagnetics 16:106–112
  • Lednev, V. V. (1991). Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12:71–75
  • Liboff, A. R. (1985). Geomagnetic cyclotron resonance in living cells. J. Biol. Phys. 13:99–102
  • Liedvogel, M., Mouritsen, H. (2010). Cryptochromes – a potential magnetoreceptor. J. R. Soc. Interface 7:S147–S162
  • Mendoza, B., Diaz-Sandoval, R. (2000). Relationships between solar activity and myocardial infarction in Mexico City. Geofis. Int. 39:53–56
  • Novikov, V. V., Fesenko, E. E. (2001). Hydrolysis of some peptides and proteins in a weak combined (constant and low-frequency variable) magnetic field. Biophysics 46:233–238
  • Novikova, K. F., Ryvkin, B. A. (1977). Solar activity and cardiovascular disease. In: Gneyshev, M. N., Ol, A. J. eds., Effect of Solar Activity on the Earth's Surface and Biosphere. Acad Sci USSR. (Translated from the Russian). Jerusalem: Israel Program Scientific Translations. pp. 184--200
  • Novikov, V. V., Sheiman, I. M., Fesenko, E. E. (2008). Effect of weak static and low-frequency alternating magnetic fields on the fission and regeneration of the planarian dugesia (Girardia) tigrina. Bioelectromagnetics 29:387–393
  • Olcese, J., Reuss, S., Vollrath, L. (1985). Evidence for the involvement of the visual system in modulating magnetic field effects on pineal melatonin synthesis in the rat. Brain Res. 333:382–384
  • Pazur, A. (2004). Characterisation of weak magnetic field effects in an aqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltammetry. Available from: http://www.biomagres.com/content/2/1/8 (accessed 8 Jun 2013)
  • Prato, F. S., Kavaliers, M., Carson, J. J. (1996). Behavioral evidence that magnetic field effects in the land snail Cepaea nemoralis might not depend on magnetite or induced electric currents. Bioelectromagnetics 17:123–130
  • Reiter, R. J. (1993). Static and extremely low frequency electromagnetic field exposures: reported effects on the circadian production of melatonin. J. Cell Biochem. 51:393–403
  • Ritz, T., Adem, S., Schulten, K. (2000). A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78:707–718
  • Sancar, A. (2000). Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Ann. Rev. Biochem. 69:31–67
  • Selmaoui, B., Touitou, Y. (1995). Sinusoidal 50-Hz magnetic fields depress rat pineal NAT activity and serum melatonin. Role of duration and intensity of exposure. Life Sci. 57:1351–1358
  • Semm, P., Beason, R. C. (1990). Responses to small magnetic variations by the trigeminal system of the bobolink. Brain Res. Bull. 25:735–740
  • Smith, S. D., Liboff A. R., McLeod, B. R. (1991). Effects of resonant magnetic fields on chick femoral development in vitro. Electrom. Biol. Med. 10:81–89
  • Smith, S. D., Liboff, A. R., McLeod, B. R., Barr, E. J. (1992). Effects of ion resonance tuned magnetic fields on N-18 neuroblastoma cells. In: Allen, M. J., Cleary, S. F., Sowers, A. E., Shillady, D. D., eds. Charge and Field Effects in Biosystems – 3. Boston: Birkhauser. pp. 263–272
  • Smith, S. D., McLeod, B. R., Liboff A. R., Cooksey, K. E. (1987). Calcium cyclotron resonance and diatom motility. Bioelectromagnetics 8:215–227
  • Stevens, R. G. (2006). Circadian disruption and breast cancer: from melatonin to clock genes. Epidemiology 16:254–258
  • Thomas, J. R., Schrot, J., Liboff, A. R. (1986). Low-intensity magnetic fields alter operant behavior in rats. Bioelectromagnetics 7:349–357
  • Vincze, G., Szasz, A., Liboff, A. R. (2008). New theoretical treatment of ion resonance phenomena. Bioelectromagnetics 29:380–386
  • Vorobyov, V. V., Sosunov, E. A., Kukushkin, N. I., Lednev, V. V. (1998). Weak combined magnetic field affects basic and morphine-induced rat’s induced EEG. Brain Res. 781:182–187
  • Webb, H. M., BrownJr, F. A. (1965). Interaction of diurnal and tidal rhythms of activity in the fiddler crab, Uca Pugnax. Biol. Bull. 129:582–591
  • Wiltschko, W., Wiltschko, R. (1972). Magnetic compass of European robins. Science 176:62--64
  • Zhadin, M. N., Deryugina, O. N., Pisachenko, T. M. (1999). Influence of combined DC and AC magnetic fields on rat behavior. Bioelectromagnetics 20:378–386
  • Zhadin, M. N., Novikov, V. V., Barnes, F. S., Pergola, N. F. (1998). Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution. Bioelectromagnetics 19:41–45

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.