107
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Short-duration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor)

, &
Pages 327-334 | Received 13 Mar 2013, Accepted 26 Jul 2013, Published online: 16 Oct 2013

References

  • Asaeda, T., Siong, K., Kawashima, T., Sakamoto, K. (2009). Growth of Phragmites japonica on a sandbar of regulated river: Morphological adaptation of the plant to low water and nutrient availability in the substrate. River Res. Appl. 25:874–891
  • Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Ann. Rev. Plant Biol. 59:89–113
  • Boxer, S. G., Chidsey, C. E. D., Roelofs, M. G. (1983). Magnetic-field effects on reaction yields in the solid-state – An example from photosynthetic reaction centers. Ann. Rev. Phys. Chem. 34:389–417
  • Cedergreen, N., Felby, C., Porter, J. R., Streibig, J. C. (2009). Chemical stress can increase crop yield. Field Crop Res. 114:54–57
  • Challis, L. J. (2005). Mechanisms for interaction between RF fields and biological tissue. Bioelectromagnetics Suppl 7:S98–S106
  • Chaves, M. M., Pereira, J. S., Maroco, J., et al. (2002). How plants cope with water stress in the field? Photosynthesis and growth. Ann. Bot. 89:907–916
  • Collen, J., Delrio, M. J., Garciareina, G., Pedersen, M. (1995). Photosynthetic production of hydrogen-peroxide by ulva-rigida C-Ag (chlorophyta). Planta 196:225–230
  • d'Ambrosio, G., Massa, R., Scarfi, M. R., Zeni, O. (2002). Cytogenetic damage in human lymphocytes following GMSK phase modulated microwave exposure. Bioelectromagnetics 23:7–13
  • Dai, F., Zhou, M., Zhang, G. (2007). The change of chlorophyll fluorescence parameters in winter barley during recovery after freezing shock and as affected by cold acclimation and irradiance. Plant Physiol. Biochem. 45:915–921
  • Dalu, J. M., Ndamba, J. (2003). Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe). Phys. Chem. Earth 28:1147–1160
  • Daniells, C., Duce, I., Thomas, D., et al. (1998). Transgenic nematodes as biomonitors of microwave-induced stress. Mutat. Res-Fund Mol. M. 399:55–64
  • Diem, E., Schwarz, C., Adlkofer, F., et al. (2005). Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat. Res-Gen. Tox. En. 583:178–183
  • Eliyahu, I., Luria, R., Hareuveny, R., et al. (2006). Effects of radiofrequency radiation emitted by cellular telephones on the cognitive functions of humans. Bioelectromagnetics 27:119–126
  • Erogul, O., Oztas, E., Yildirim, I., et al. (2006). Effects of electromagnetic radiation from a cellular phone on human sperm motility: An in vitro study. Arch. Med. Res. 37:840–843
  • Fai, P. B., Grant, A., Reid, B. (2007). Chlorophyll a fluorescence as a biomarker for rapid toxicity assessment. Environ. Toxicol. Chem. 26:1520–1531
  • Faraloni, C., Cutino, I., Petruccelli, R., et al. (2011). Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress. Environ. Exp. Bot. 73:49–56
  • Frankart, C., Eullaffroy, P., Vernet, G. (2003). Comparative effects of four herbicides on non-photochemical fluorescence quenching in Lemna minor. Environ. Exp. Bot. 49:159–168
  • Geacintov, N. E., Van Nostrand, F., Pope, M., Tinkel, J. B. (1971). Magnetic field effect on the chlorophyll fluorescence in Chlorella. Biochim. Biophys. Acta 226:486–491
  • Gomes, P. I. A., Asaeda, T. (2009). Spatial and temporal heterogeneity of Eragrostis curvula in the downstream flood meadow of a regulated river. Ann. Limnol-Int. J. Lim. 45:181–193
  • Haggerty, K. (2010). Adverse influence of radio frequency background on trembling aspen seedlings: Preliminary observations. Int. J. For. Res. 2010:1–7
  • Heraud, P., Beardall, J. (2000). Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes. Photosynth. Res. 63:123–134
  • Herde, O., Cortes, H. P., Wasternack, C., et al. (1999). Electric signaling and Pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid-deficient tomato mutants. Plant Physiol. 119:213–218
  • Huck, M., Hageman, R., Hanson, J. (1962). Diurnal variation in root respiration. Plant Physiol. 37:371--375
  • Hyland, G. (2005). How exposure to mobile phone base-station signals can adversely affect humans. Available from: http://www.tetrawatch.net/papers/hyland_2005.pdf (accessed 14 May 2012)
  • Hyland, G., Chambers, G. (2001). The physiological and environmental effects on non-ionising electromagnetic radiation. Available from: http://www.next-up.org/pdf/00-07-03sum_en.pdf (accessed 16 Apr 2013)
  • Khalafallah, A., Sallam, S. (2009). Response of maize seedlings to microwaves at 945 MHz. Romanian J. Biophys. 19:49–62
  • Kositsky, N. N., Nizhelska, A. I., Ponezha, G. V. E. (2001). Influence of high-frequency electromagnetic radiation at non-thermal intensities on the human body. No place to hide 3:1–31
  • Kreps, J. A., Wu, Y. J., Chang, H. S., et al. (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130:2129–2141
  • Krieger-Liszkay, A. (2005). Singlet oxygen production in photosynthesis. J. Exp. Bot. 56:337–346
  • La Vignera, S., Condorelli, R. A., Vicari, E., et al. (2012). Effects of the exposure to mobile phones on male reproduction: A review of the literature. Journal of Andrology 33:350–356
  • Lai, H. (2005). Biological effects of radiofrequency electromagnetic field. In: Wnek, G. E., Bowlin, G. L., eds. Encyclopedia of Biomaterials and Biomedical Engineering. United Kingdom: Taylor & Francis. pp. 1--8
  • Lai, P.-Y., Wong, K.-L. (2008). Capacitively FED hybrid monopole/slot chip antenna for 2.5/3.5/5.5 GHz WiMAX operation in the mobile phone. Microw. Opt. Techn. Let. 50:2689–2694
  • Läuchli, A., Grattan, S. R. (2007). Plant growth and development under salinity stress. In: Jenks, M., Hasegawa, P., Jain, S. M., eds. Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Netherlands: Springer. pp. 1--32
  • Lazar, D., Naus, J. (1998). Statistical properties of chlorophyll fluorescence induction parameters. Photosynthetica 35:121–127
  • Lu, C., Zhang, J. (1999). Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J. Exp. Bot. 50:1199–1206
  • Marinelli, F., La Sala, D., Cicciotti, G., et al. (2004). Exposure to 900 MHz electromagnetic field induces an unbalance between pro-apoptotic and pro-survival signals in T-lymphoblastoid leukemia CCRF-CEM cells. J. Cell. Physiol. 198:479–480
  • Maxwell, K., Johnson, G. N. (2000). Chlorophyll fluorescence – A practical guide. J. Exp. Bot. 51:659–668
  • McNamee, J. P., Chauhan, V. (2009). Radiofrequency radiation and gene/protein expression: A review. Radiat. Res. 172:265–287
  • Meral, I., Mert, H., Mert, N., et al. (2007). Effects of 900-MHz electromagnetic field emitted from cellular phone on brain oxidative stress and some vitamin levels of guinea pigs. Brain Res. 1169:120–124
  • Muller, P., Li, X. P., Niyogi, K. K. (2001). Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125:1558–1566
  • Niyogi, K., Shih, C., Soon Chow, W., et al. (2001). Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis. Photosynth Res 67:139–145
  • Nylund, R., Leszczynski, D. (2006). Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome- and proteome-dependent. Proteomics 6:4769–4780
  • Penafiel, L. M., Litovitz, T., Krause, D., et al. (1997). Role of modulation on the effect of microwaves on ornithine decarboxylase activity in L929 cells. Bioelectromagnetics 18:132–141
  • Pologea-Moraru, R., Kovacs, E., Iliescu, K. R., et al. (2002). The effects of low level microwaves on the fluidity of photoreceptor cell membrane. Bioelectrochemistry 56:223–225
  • Popovic, Z. D., Kovacs, G. J., Vincett, P. S., et al. (1986). Electric-field dependence of the quantum yield in reaction centers of photosynthetic bacteria. BBA-Bioenergetics 851:38–48
  • Prasad, P. V. V., Staggenborg, S. A., Ristic, Z. (2008). Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Ahuja, L. H., Ma, L., Saseendran, S., eds. Responses of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes. Advances in Agricultural Modeling Series 1. Madison, WI: ASA-CSSA. pp. 301--355
  • Reddy, K. R., Debusk, W. F. (1985). Growth-characteristics of aquatic macrophytes cultured in nutrient-enriched water. II. Azolla, Duckweed, and Salvinia. Econ. Bot. 39:200–208
  • Roux, D., Vian, A., Girard, S., et al. (2006). Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. Physiol. Plant. 128:283–288
  • Roux, D., Vian, A., Girard, S., et al. (2008). High frequency (900 MHz) low amplitude (5 V m−1) electromagnetic field: A genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato. Planta 227:883–891
  • Sharma, V. P., Singh, H. P., Kohli, R. K., Batish, D. R. (2009). Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. Sci. Total Environ. 407:5543–5547
  • Sieciechowicz, K., Ireland, R. J., Joy, K. W. (1985). Diurnal-variation of asparaginase in developing pea leaves. Plant Physiol. 77:506--508
  • Tkalec, M., Malaric, K., Pevalek-Kozlina, B. (2007). Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L. Sci. Total Environ. 388:78–89
  • Tkalec, M., Malaric, K. I., Pevalek-Kozlina, B. (2005). Influence of 400, 900, and 1900 MHz electromagnetic fields on Lemna minor growth and peroxidase activity. Bioelectromagnetics 26:185–193
  • Ursache, M., Mindru, G., Creanga, D. E., et al. (2007). The effects of high frequency electromagnetic waves on the vegetal organisms. Romanian J. Phys. 54:133–145
  • WHO. (2013). What are electromagnetic fields? Electromagnetic fields. Available from: http://www.who.int/peh-emf/about/WhatisEMF/en/index1.html (accessed 18 Jan 2013)
  • Willits, D. H., Peet, M. M. (2001). Measurement of chlorophyll fluorescence as a heat stress indicator in tomato: Laboratory and greenhouse comparisons. J. Am. Soc. Hortic. Sci. 126:188–194
  • Yamasaki, H., Sakihama, Y., Ikehara, N. (1997). Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol. 115:1405–1412
  • Ye, L.-H., Chu, Q.-X. (2010). Compact dual-wideband antenna for WLAN/WiMAX applications. Microw. Opt. Techn. Let. 52:1228–1231
  • Yoo, S. D., Greer, D. H., Laing, W. A., McManus, M. T. (2003). Changes in photosynthetic efficiency and carotenoid composition in leaves of white clover at different developmental stages. Plant Physiol. Bioch. 41:887–893

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.