220
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Effects of moderate static magnetic fields on the voltage-gated sodium and calcium channel currents in trigeminal ganglion neurons

, , , , , & show all
Pages 285-292 | Received 22 Oct 2013, Accepted 09 Mar 2014, Published online: 08 Apr 2014

References

  • Amaya, F., Decosterd, I., Samad, T. A., et al. (2000). Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2. Mol. Cell. Neurosci. 15:331–342
  • Catterall, W. A. (2000). From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron. 26:13–25
  • Catterall, W. A. (2011). Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3:a003947 (1–23)
  • Catterall, W. A. (2012). Voltage-gated sodium channels at 60: Structure, function and pathophysiology. J. Physiol. 590:2577–2589
  • Catterall, W. A., Perez-Reyes, E., Snutch, T. P., Striessnig, J. (2005). International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 57:411–425
  • Cavopol, A. V., Wamil, A. W., Holcomb, R. R., McLean, M. J. (1995). Measurement and analysis of static magnetic fields that block action potentials in cultured neurons. Bioelectromagnetics. 16:197–206
  • Choquet, D., Korn, H. (1992). Mechanism of 4-aminopyridine action on voltage-gated potassium channels in lymphocytes. J. Gen. Physiol. 99:217–240
  • Cordeiro, P.G., Seckel, B.R., Miller, C.D., et al. (1989). Effect of a high-intensity static magnetic field on sciatic nerve regeneration in the rat. Plast. Reconstr. Surg. 83:301–308
  • Dobson, J., Stewart, Z., Martinac, B. (2002a). Preliminary evidence for weak magnetic field effects on mechanosensitive ion channel sub-conducting states in E. coli. Electromagn. Biol. Med. 21:89–95
  • Dobson, J., Stewart, Z., Martinac, B. (2002b). Preliminary evidence for weak magnetic field effects on mechanosensitive ion channel sub-conducting states in E. coli-errata. Electromagn. Biol. Med. 21:309
  • Dolphin, A. C. (2003). Beta subunits of voltage-gated calcium channels. J. Bioenerg. Biomembr. 35:599–620
  • Eijkelkamp, N., Linley, J. E., Baker, M. D., et al. (2012). Neurological perspectives on voltage-gated sodium channels. Brain. 135:2585–2612
  • Hodgkin, A. L., Huxley, A. F. (1952a). Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116:449–472
  • Hodgkin, A. L., Huxley, A. F. (1952b). The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. 116:497–506
  • Hoshi, T., Zagotta, W. N., Aldrich, R. W. (1990). Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 250:533–538
  • Hoshi, T., Zagotta, W. N., Aldrich, R. W. (1991). Two types of inactivation in Shaker K+ channels: Effects of alterations in the carboxy-terminal region. Neuron. 7:547–556
  • Hughes, S., El Haj, A. J., Dobson, J., Martinac, B. (2005). The influence of static magnetic fields on mechanosensitive ion channel activity in artificial liposomes. Eur. Biophys. J. 34:461–468
  • Kim, H. C., Chung, M. K. (1999). Voltage-dependent sodium and calcium currents in acutely isolated adult rat trigeminal root ganglion neurons. J. Neurophysiol. 81:1123–1134
  • Li, G., Cheng, L. J., Qiao, X. Y., Lin, L. (2010). Characteristics of delayed rectifier potassium channels exposed to 3 mT static magnetic field. IEEE Trans. Magnet. 46:2635–2638
  • Liu, L., Simon, S. A. (2003). Modulation of IA currents by capsaicin in rat trigeminal ganglion neurons. J. Neurophysiol. 89:1387–1401
  • Maret, G., Dransfeld, K. (1977). Macromolecules and membranes in high magnetic fields. Physica. 86–88B:1077–1083
  • McLean, M. J., Holcomb, R. R., Wamil, A. W., et al. (1995). Blockade of sensory neuron action potentials by a static magnetic field in the 10 mT range. Bioelectromagnetics. 16:20–32
  • Mitcheson, J. S., Sanguinetti, M. C. (1999). Biophysical properties and molecular basis of cardiac rapid and slow delayed rectifier potassium channels. Cell Physiol. Biochem. 9:201–216
  • Novakovic, S. D., Tzoumaka, E., McGivern, J. G., et al. (1998). Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J. Neurosci. 18:2174–2187
  • Rasband, M. N., Park, E. W., Vanderah, T. W., et al. (2001). Distinct potassium channels on pain-sensing neurons. Proc. Natl. Acad. Sci. USA. 98:13373–13378
  • Rasmusson, R. L., Morales, M. J., Wang, S., et al. (1998). Inactivation of voltage-gated cardiac K+ channels. Circ. Res. 82:739–750
  • Rosen, A. D. (1992). Magnetic field influence on acetylcholine release at the neuromuscular junction. Am. J. Physiol. 262:C1418–C1422
  • Rosen, A. D. (1993a). Membrane response to static magnetic fields: Effect of exposure duration. Biochim. Biophys. Acta. 1148:317–320
  • Rosen, A. D. (1993b). A proposed mechanism for the action of strong static magnetic fields on biomembranes. Int. J. Neurosci. 73:115–119
  • Rosen, A. D. (1996). Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim. Biophys. Acta. 1282:149–155
  • Rosen, A. D. (2001). Nonlinear temperature modulation of sodium channel kinetics in GH(3) cells. Biochim. Biophys. Acta. 1511:391–396
  • Rosen, A. D. (2003a). Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics. 24:517–523
  • Rosen, A. D. (2003b). Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem. Biophys. 39:163–173
  • Rosen, A. D., Lubowsky, J. (1990). Modification of spontaneous unit discharge in the lateral geniculate body by a magnetic field. Exp. Neurol. 108:261–265
  • Satow, Y., Matsunami, K., Kawashima, T., et al. (2001). A strong constant magnetic field affects muscle tension development in bullfrog neuromuscular preparations. Bioelectromagnetics. 22:53–59
  • Shen, J., Wang, H., Ma, Y., et al. (2012). Effects of intracellular osmolality changes on the voltage-gated sodium channels currents of trigeminal ganglion neuron. Hua Xi Kou Qiang Yi Xue Za Zhi. 30:338–342
  • Shen, J. F., Chao, Y. L., Du, L. (2007). Effects of static magnetic fields on the voltage-gated potassium channel currents in trigeminal root ganglion neurons. Neurosci. Lett. 415:164–168
  • Takeda, M., Tanimoto, T., Ikeda, M., et al. (2004a). Activaton of GABAB receptor inhibits the excitability of rat small diameter trigeminal root ganglion neurons. Neuroscience. 123:491–505
  • Takeda, M., Tanimoto, T., Ikeda, M., et al. (2004b). Opioidergic modulation of excitability of rat trigeminal root ganglion neuron projections to the superficial layer of cervical dorsal horn. Neuroscience. 125:995–1008
  • Wieraszko, A. (2000). Dantrolene modulates the influence of steady magnetic fields on hippocampal evoked potentials in vitro. Bioelectromagnetics. 21:175–182
  • Xu, C., Chao, Y. L., Du, L., Yang, L. (2004). Measurements of the flux densities of static magnetic fields generated by two types of dental magnetic attachments and their retentive forces. Sichuan Da Xue Xue Bao Yi Xue Ban. 35:412–415
  • Ye, S. R., Yang, J. W., Chen, C. M. (2004). Effect of static magnetic fields on the amplitude of action potential in the lateral giant neuron of crayfish. Int. J. Radiat. Biol. 80:699–708
  • Yellen, G. (2002). The voltage-gated potassium channels and their relatives. Nature. 419:35–42

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.