269
Views
29
CrossRef citations to date
0
Altmetric
Original Article

Static magnetic field increases survival rate of dental pulp stem cells during DMSO-free cryopreservation

, , , , , , & show all
Pages 302-308 | Received 08 Aug 2013, Accepted 20 Apr 2014, Published online: 23 May 2014

References

  • Alonso, A., Meirelles, N. C., Yushmanov, V. E., et al. (1996). Water increases the fluidity of intercellular membranes of stratum corneum: Correlation with water permeability, elastic, and electrical resistance properties. J. Invest. Dermatol. 106:1058–1063
  • Anchordoguy, T. J., Cecchini, C. A., Crowe, J. H., et al. (1991). Insights into the cryoprotective mechanism of dimethyl sulfoxide for phospholipid bilayers. Cryobiology. 28:467–473
  • Anchordoguy, T. J., Rudolph, A. S., Carpenter, J. F., et al. (1987). Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology. 24:324–331
  • Blesbois, E., Grasseau, I., Seigneurin, F. (2005). Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation. Reproduction. 129:371–378
  • Buchanan, S. S., Gross, S. A., Acker, J. P., et al. (2004). Cryopreservation of stem cells using trehalose: Evaluation of the method using a human hematopoietic cell line. Stem Cells Dev. 13:295–305
  • Carvalho, K. A., Cury, C. C., Oliveira, L., et al. (2008). Evaluation of bone marrow mesenchymal stem cell standard cryopreservation procedure efficiency. Transplant. Proc. 40:839–841
  • Chen, Y. K., Huang, A. H., Chan, A. W., et al. (2011). Human dental pulp stem cells derived from different cryopreservation methods of human dental pulp tissues of diseased teeth. J. Oral Pathol. Med. 40:793–800
  • Chiu, K. H., Ou, K. L., Lee, S. Y., et al. (2007). Static magnetic fields promote osteoblast-like cells differentiation via increasing the membrane rigidity. Ann. Biomed. Eng. 35:1932–1939
  • Davis, J. M., Rowley, S. D., Braine, H. G., et al. (1990). Clinical toxicity of cryopreserved bone marrow graft infusion. Blood. 75:781–786
  • De Rosa, A., De Francesco, F., Tirino, V., et al. (2009). A new method for cryopreserving adipose-derived stem cells: An attractive and suitable large-scale and long-term cell banking technology. Tissue Eng. Part C. 15:659–667
  • Ding, G., Wang, W., Liu, Y., et al. (2010). Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla. J. Cell Physiol. 223:415–422
  • Fahy, G. M., Lilley, T. H., Linsdell, H. (1990). Cryoprotectant toxicity and cryoprotectant toxicity reduction: In search of molecular mechanisms. Cryobiology. 27:247–268
  • Gebhardt, M., Murray, P. E., Namerow, K. N., et al. (2009). Cell survival within pulp and periodontal constructs. J. Endod. 35:63–66
  • Gronthos, S., Mankani, M., Brahim, J., et al. (2000). Postnatal human dental pulp stem cells (DPSCS) in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 97:13625–13630
  • Huang, M. S., Chang, W. J., Huang, H. M., et al. (2011). Effects of transportation time after extraction on the magnetic cryopreservation of pulp cells of rat dental pulp. J. Dent. Sci. 6:48–52
  • Huang, H. M., Lee, S. Y., Yao, W. C., et al. (2006). Static magnetic fields up-regulate osteoblast maturity by affecting local differentiation factors. Clin. Orthop. Relat. Res. 447:201–208
  • Hubel, A. (1997). Parameters of cell freezing: Implications for the cryopreservation of stem cells. Transfus. Med. Rev. 11:224–233
  • Kaku, M., Kamada, H., Kawata, T., et al. (2010). Cryopreservation of periodontal ligament cells with magnetic field for teeth banking. Cryobiology 61:73–78
  • Kawata, T., Abedini, S., Kaku, M., et al. (2012). Effects of DMSO (Dimethyl sulfoxide) free cryopreservation with program freezing using a magnetic field on periodontal ligament cells and dental pulp tissues. Biomed. Res. 23:438–443
  • Lande, M. B., Donovan, J. M., Zeidel, M. L. (1995). The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons. J. Gen. Physiol. 106:67–84
  • Lee, S. Y., Chiang, P. C., Tsai, Y. H., et al. (2010). The effects of cryopreservation of intact teeth on the isolated dental pulp stem cells. J. Endod. 36:1336–1340
  • Lee, S. Y., Huang, G. W., Shiung, J. N., et al. (2012). Magnetic cryopreservation for dental pulp stem cells. Cells Tissues Organs. 196:23–33
  • Lin, C. Y., Chang, W. J., Lee, S. Y., et al. (2013a). Influence of a static magnetic field on the slow freezing of human erythrocytes. Int. J. Rad. Biol. 89:51–56
  • Lin, C. Y., Wei, P. L., Chang, W. J., et al. (2013b). Slow freezing coupled static magnetic field exposure enhances cryopreservative efficiency – A study on human erythrocytes. PLoS One. 8:e58988
  • Lin, S. L., Chang, W. J., Chiu, K. H., et al. (2008). Mechanobiology of MG63 osteoblast-like cells adaptation to static magnetic forces. Electromag. Biol. Med. 27:55–64
  • Ma, L., Makino, Y., Yamaza, H., et al. (2012). Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine. PLoS One. 7:e51777
  • Mazur, P. (1984). Freezing of living cells: Mechanisms and implications. Am. J. Physiol. Cell Physiol. 247:C125–C142
  • Papaccio, G., Graziano, A., d’Aquino, R., et al. (2006). Long-term cryopreservation of dental pulp stem cells (SBP-DPSCS) and their differentiated osteoblasts: A cell source for tissue repair. J. Cell Physiol. 208:319–325
  • Perry, B. C., Zhou, D., Wu, X., et al. (2008). Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng. Part C Methods. 14:149–156
  • Pierdomenico, L., Bonsi, L., Calvitti, M., et al. (2005). Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation. 80:836–842
  • Przybylska, M., Koceva-Chyla, A., Rozga, B., et al. (2005). Cytotoxicity of daunorubicin in trisomic (+21) human fibroblasts: Relation to drug uptake and cell membrane fluidity. Cell Biol. Int. 25:157–170.
  • Rodrigues, J. P., Paraguassu-Braga, F. H., Carvalho, L., et al. (2008). Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology. 56:144–151
  • Schenck, J. F. (2000). Safety of strong, static magnetic fields. J. Magn. Reson. Imaging. 12:2–19
  • Schenck, J. F. (2005). Physical interactions of static magnetic fields with living tissues. Prog. Biophys. Mol. Biol. 87:185–204
  • Scott, K. L., Lecak, J., Acker, J. P. (2005). Biopreservation of red blood cells: Past, present, and future. Transfus. Med. Rev. 19:127–142
  • Seo, B. M., Miura, M., Sonoyama, W., et al. (2005). Recovery of stem cells from cryopreserved periodontal ligament. J. Dent. Res. 84:907–912
  • Sumida, S. (2006). Transfusion and transplantation of cryopreserved cells and tissues. Cell Tissue Bank. 7:265–305
  • Tiburu, E. K., Moton, D. M., Lorigan, G. A. (2001). Development of magnetically aligned phospholipid bilayers in mixtures of palmitoylstearoylphosphatidylcholine and dihexanoylphosphatidylcho line by solid-state NMR spectroscopy. Biochim. Biophys. Acta. 1512:206–214
  • Wolfe, J., Bryant, G. (1999). Freezing, drying, and/or vitrification of membrane- solute-water systems. Cryobiology. 39:103–129
  • Woods, E. J., Perry, B. C., Hockema, J. J., et al. (2009). Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. Cryobiology. 59:150–157
  • Zhang, W., Walboomers, X. F., Shi, S., et al. (2006). Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng. 12:2813–2823

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.