164
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Magnetic nano-Fe3O4 particles targeted gathering and bio-effects on nude mice loading human hepatoma Bel-7402 cell lines model under external magnetic field exposure in vivo

, , &
Pages 309-316 | Received 13 Sep 2013, Accepted 20 Apr 2014, Published online: 23 May 2014

References

  • Adriana, P. H., Carola, B., Yashira, Z., et al. (2010). Monitoring colloidal stability of polymer-coated magnetic nanoparticles using AC susceptibility measurements. J. Coll. Inter. Sci. 342:540–549
  • Alessandro, S., Susanna, C., Stefano, S., et al. (2012). The emerging role of targeted therapy in renal cell carcinoma (RCC): Is it time for a neoadjuvant or an adjuvant approach? Crit. Rev. Oncol./Hematol. 81:151–162
  • Alina, S., Yoav, D. L., Henk, J. B., et al. (2011). Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance. Drug Res. Upd. 14:150–163
  • Alsayed, A. M. E., Mahmoud, S., Mohamed, A., et al. (2011). Magnetic nanoparticle induced hyperthermia treatment under magnetic resonance imaging. Magn. Reson. Imag. 29:272–280
  • Arthur, P., Robert, F., David, M., et al. (2011). Electromagnetic fields as first messenger in biological signaling: Application to calmodulin-dependent signaling in tissue repair. Biochim. Biophys. Acta (BBA) – Gene Sub. 1810:1236–1245
  • Claudia, C., Sonia, C., Maria, C. A., et al. (2011). Magnetic fields promote a pro-survival non-capacitative Ca2+ entry via phospholipase C signaling. Inter. J. Biochem. Cell Biol. 43:393–400
  • Clinton, F. J., David, W. G. (2009). In vitro assessments of nanomaterial toxicity. Adv. Drug Del. Rev. 61:438–456
  • Conti, P., Gigante, G. E., Alesse, E., et al. (1985). A role for Ca2+ in the effect of very low frequency electromagnetic field on the blastogenesis of human lymphocytes. FEBS Lett. 181:28–32
  • Daniela, D. R., Gustavo, I., Lissandra, D. L., et al. (2008). Molecular-targeted therapies: Lessons from years of clinical development. Can. Treat. Rev. 34:61–80
  • Dilek, U. C., Beran, Y., Mehmet, Z. A., et al. (2009). Alterations of hematological variations in rats exposed to extremely low frequency magnetic fields (50 Hz). Arch. Med. Res. 40:352–356
  • Felix, T. H. (1995). Magnetic field effects on biomolecules, cells, and living organisms. Biosystems. 36:187–229
  • Giampaolo, T., Roberto, B., Gennaro, D., et al. (2007). Overcoming resistance to molecularly targeted anticancer therapies: Rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies. Drug Resist. Updat. 10:81–100
  • Guangfu, Y., Zhongbing, H., Min, D., et al. (2011). Preparation and cell response of bio-mineralized Fe3O4 nanoparticles. J. Coll. Inter. Sci. 363:393–402
  • Hossam, M. M. A., Adel, R. A. A., Mohamad, A. E. M., et al. (2003). Immunomodulatory effects of L-carnitine and q10 in mouse spleen exposed to low-frequency high-intensity magnetic field. Toxicology. 187:171–181
  • Ibrahim, S., Shokrollahi, H., Amiri, S. (2012). Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magnet. Magnet. Mater. 324:903–915
  • Jana, C., Jana, D., Dalibor, H., et al. (2010). Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62:144–149
  • Janez, V., Ivo, I., Damjana, D. (2011). The importance of a validated standard methodology to define in vitro toxicity of nano-TiO2. Protoplasma. 249:493–502
  • János, L., Júlia, T., Zsuzsanna, G., et al. (2009). Pain-inhibiting inhomogeneous static magnetic field fails to influence locomotor activity and anxiety behavior in mice: No interference between magnetic field- and morphine-treatment. Brain Res. Bull. 79:316–321
  • Kelland, L. R. (2004). “Of mice and men”: Values and liabilities of the athymic nude mouse model in anticancer drug development. Eur. J. Cancer. 40:827–836
  • Kim, J. G., Kang, M. J., Yoon, Y. K., et al. (2012). Heterodimerization of glycosylated insulin-like growth factor-1 receptors and insulin receptors in cancer cells sensitive to anti-IGF1R antibody. PLoS One. 7:e33322
  • Liang, C., Kai, Y., Yonggang, L., et al. (2012). Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials. 33:2215–2222
  • Luciana, D., Luigi, A. (2005). Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron. 36:195–217
  • María, G. D., Santi, N., Ángeles, V., et al. (2011). Do folate-receptor targeted liposomal photosensitizers enhance photodynamic therapy selectivity?. Biochim. Biophys. Acta (BBA) – Biomemb. 1808:1063–1071
  • Ming, M., Hangrong, C., Yu, C., et al. (2012). Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials. 33:989–998
  • Murat, S., Aysenur, C., Enis, O., et al. (2011). Prognostic significance of tumor volume in nasopharyngeal carcinoma. Aur. Nas. Lar. 38:250–254
  • Naomi, B. H., Uzzo, R. G. (2007). Targeted therapies for kidney cancer in urologic practice. Urol. Oncol.: Semi. Origin Invest. 25:420–432
  • Pasquini, R., Villarini, M., Scassellati, S. G., et al. (2003). Micronucleus induction in cells co-exposed in vitro to 50 Hz magnetic field and benzene, 1,4-benzenediol (hydroquinone) or 1,2,4-benzenetriol. Toxicol. In Vitro. 17:581–586
  • Renyun, Z., Chunhui, W., Xuemei, W., et al. (2009). Enhancement effect of nanoFe3O4 to the drug accumulation of doxorubicin in cancer cells. Mat. Sci. Eng.: C. 29:1697–1701
  • Sanfeld, A., Sefiane, K., Steinchen, A. (2011). Reactions of dipolar bio-molecules in nano-capsules – example of folding-unfolding process. Adv. Colloid. Inter. Sci. 169:26–39
  • Shin, B. J., Burkhardt, J. K., Riina, H. A., et al. (2012). Intra-arterial cerebral infusion of novel agents after blood-brain disruption for the treatment of recurrent glioblastoma multiforme: A technical case series. Neurosurg. Clin. N. Am. 23:323–329
  • Tenuzzo, B., Vergallo, C., Dini, L. (2009). Effect of 6 mT static magnetic field on the bcl-2, bax, p53 and hsp70 expression in freshly isolated and in vitro aged human lymphocytes. Tissue Cell. 41:169–179
  • Thoralf, C., Tormod, K. G., KarenLise, G. S., et al. (2009). Cancer therapy targeted at cellular signal transduction mechanisms: Strategies, clinical results, and unresolved issues. Eur. J. Pharm. 625:6–22
  • Won, H. S., Kenneth, S. S., Galen, D. S., et al. (2009). Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 87:133–170
  • Wu, J. J., Lu, T. R., Wu, C. T., et al. (1999). Nano-carbon nitride synthesis from a bio-molecular target for ion beam sputtering at low temperature. Diamond Relat. Mater. 8:605–609
  • Zhu, R. R., Wang, S. L., Jun, C., et al. (2009). Bio-effects of nano-TiO2 on DNA and cellular ultrastructure with different polymorph and size. Mat. Sci. Eng.: C. 29:691–696

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.