123
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Radiating Fröhlich system as a model of cellular electromagnetism

Pages 355-360 | Received 19 Mar 2014, Accepted 10 Jun 2014, Published online: 16 Jul 2014

References

  • Alberts, B., Johnson, A., Lewis, J., et al. (2002). Molecular Biology of the Cell (Ch. 16). New York: Garland Science
  • Böhm, K. J., Mavromatos, N. E., Michette, A., et al. (2005). Movement and alignment of microtubules in electric fields and electric dipole moment estimates. Electromagn. Biol. Med. 24:319–330
  • Calhoun, T. R., Fleming, G. R. (2011). Quantum coherence in photosynthetic complexes. Phys. Stat. Solid. B. 248:833–838
  • Carrara, S., Riley, D. S., Bavastrello, V., et al. (2005). Methods to fabricate nanocontacts for electrical addressing of single molecules. Sens. Actuators B. 105:542–548
  • Fröhlich, H. (1968). Long range coherence and energy storage in biological systems. Int. J. Quantum Chem. 11:641–649
  • Fröhlich, H. (1969). Quantum mechanical concepts in biology. In: Marois, M. Theoretical Physics and Biology. Amsterdam: North Holland. pp. 13–22
  • Fröhlich, H. (1977). Long range coherence in biological systems. Riv. Nuovo. Cimento. 7:399–418
  • Hierlemann, A., Frey, U., Hafizovic, S., et al. (2011). Growing cells atop microelectronic chips: Interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proc. IEEE. 99:252–284
  • Hölzel, R. (2001). Electric activity of non-excitable biological cells. Electro-Magnetobiol. 20:1–13
  • Hölzel, R., Lamprecht, I. (1994). Electromagnetic fields around biological cells. Neural Network World 4:327–337
  • Hyland, G. J. (1995). Fröhlich memorial lecture. Neural Network World 5:651–665
  • Janmey, P. A., Euteneur, U., Traub, P., et al. (1991). Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J. Cell Biol. 113:155–160
  • Jelínek, F., Pokorný, J., Šaroch, J., et al. (1999). Microelectronic sensors for measurement of electromagnetic fields of living cells and experimental results. Bioelectrochem. Bioenerg. 48:261–266
  • Kaiser, F. (1979). Boltzmann equation approach to Fröhlich’s vibrational model of Bose condensation-like excitations of coherent modes in biological systems. Z. Naturforsch. 34a:134–146
  • Likharev, K. L. (1999). Single-electron devices and their applications. Proc. IEEE. 87:606–632
  • Luisell, W. H. (1990). Quantum Statistical Properties of Radiation (Ch. 4). New York: J. Wiley and Sons
  • Mahmoud, A., Lugli, P. (2013). Study on molecular devices with negative differential resistance. Appl. Phys. Lett. 103:033506, 1–4
  • Miao, L., Seminario, J. M. (2007). Molecular dynamics simulations of signal transmission through a glycine peptide chain. J. Chem. Phys. 127:134708, 1–7
  • Nakajima, A., Kudo, T., Furuse, S. (2013). Biomolecule detection based on Si single-electron transistors for practical use. Appl. Phys. Lett. 103:043702, 1–4
  • Pelling, A. E., Schati, S., Gralla, E. B., et al. (2004). Local nano-mechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305:1147–1150
  • Pokorný, J. (2004). Excitation of vibrations in microtubules in living cells. Bioelectrochemistry 63:321–326
  • Pokorný, J., Fiala, J. (1994). Heat bath coupling effects on interaction between Fröhlich vibration systems. Czech. J. Phys. 44:67–78
  • Pokorný, J., Hašek, J., Jelínek, F., et al. (2001). Electromagnetic activity of yeast cells in the M phase. Electro. Magnetobiol. 20:371–396
  • Pokorný, J., Hašek, J., Vaniš, J., et al. (2008). Biophysical aspects of cancer – Electromagnetic mechanism. Ind. J. Experim. Biol. 46:310–321
  • Rowlands, S., Sewchand, L. S., Enns, E. G. (1982). Further evidence for a Fröhlich interaction in erythrocytes. Phys. Lett. 87A:256–258
  • Sahu, S., Ghosh, S., Ghosh, B., et al. (2013a). Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly. Biosens. Bioelectron. 47:141–148
  • Sahu, S., Ghosh, S., Hirata, K., et al. (2013b). Multi-level memory-switching properties of a single brain microtubule. Appl. Phys. Lett. 102:123701, 1–4
  • Seminario, J. M., Yan, L., Ma, Y. (2005). Scenarios for molecular-level signal processing. Proc. IEEE. 93:1753–1763
  • Šrobár, F. (1992). Feedback relationships – A neglected theme in physics. Eur. J. Phys. 13:1–8
  • Šrobár, F. (2005). Fröhlich system with modulated access to pumping source. Electromagn. Biol. Med. 24:265–272
  • Šrobár, F. (2009). Occupation-dependent access to metabolic energy in Fröhlich systems. Electromagn. Biol. Med. 28:194–200
  • Šrobár, F. (2013). Impact of mitochondrial electric field on modal occupancy in the Fröhlich model of cellular electromagnetism. Electromagn. Biol. Med. 32:401–408
  • Šrobár, F., Pokorný, J. (1996). Topology of mutual relationships implicit in the Fröhlich model. Bioelectrochem. Bioenerg. 41:31–33
  • Šrobár, F., Pokorný, J. (1999). Causal structure of the Fröhlich model of cellular electromagnetic activity. Electro. Magnetobiol. 18:257–268
  • Wu, T. M., Austin, S. J. (1977). Bose condensation in biosystems. Phys. Lett. A. 64:151–152
  • Ziman, J. M. (1972). Principles of the Theory of Solids (Ch. 2). Cambridge: University Press

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.