136
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of biological effects of electromagnetic fields with pulse frequencies of 8 and 50 Hz on gastric smooth muscles

, &
Pages 143-151 | Received 15 Sep 2014, Accepted 08 Mar 2015, Published online: 20 Jul 2015

References

  • Balser, M., Wagner, C. (1960). Observations of Earth–ionosphere cavity resonances. Nature 188:638–641.
  • Bauréus Koch, C. L., Sommarin, M., Persson, B. R., et al. (2003). Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 24:395–402.
  • Binhi, V. N. (2002). Magnetobiology: Underlying Physical Problems. San Diego: Academic Press. p. 473.
  • Blackman, C. F., Benane, S. G., Kinney, L. S., et al. (1982). Effects of ELF (1-120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro. Radiat. Res. 92:510–520.
  • Bolton, T. B., Prestwich, S. A., Zholos, A. V., Gordienko, D. V. (1999). Excitation-contraction coupling in gastrointestinal and other smooth muscles. Annu. Rev. Physiol. 61:85–115.
  • Catterall, W. A. (2011). Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3:a003947.
  • Cho, S. I., Nam, Y. S., Chu, L. Y., et al. (2012). Extremely low-frequency magnetic fields modulate nitric oxide signaling in rat brain. Bioelectromagnetics 33:568–574.
  • Cui, Y., Liu, X., Yang, T., et al. (2014). Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway. Cell Calcium 55:48–58.
  • Dora, K. A., Doyle, M. P., Duling, B. R. (1997). Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of NO in arterioles. Proc. Natl. Acad. Sci. U. S. A. 94:6529–6534.
  • Gaetani, R., Ledda, M., Barile, L., et al. (2009). Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovasc. Res. 82:411–420.
  • Kaiser, F. (1996). Review: External signals and internal oscillation dynamics: Biophysical aspects and modelling approaches for interactions of weak electromagnetic fields at the cellular level. Bioelectrochem. Bioenerg. 41:3–18.
  • Karaki, H., Ozaki, H., Hori, M., et al. (1997). Calcium movements, distribution, and functions in smooth muscle. Pharmacol. Rev. 49:157–230.
  • Khaki, A. A., Arash Khaki, D. V. M., Garachurlou, S., et al. (2008). Pre and post natal exposure of 50 Hz electromagnetic fields on prostate glands of rats: An electron microscopy study. Iran. J. Reprod. Med. 6:77–82.
  • Kim, H. J., Jung, J., Park, J. H., et al. (2013). Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Exp. Biol. Med. 238:923–931.
  • Lai, H. (October 2-6, 2001). Genetic Effects of Nonionizing Electromagnetic Fields. Sinaia: International Workshop on Biological Effects of Ionizing Radiation, Electromagnetic Fields and Chemical Toxic Agents.
  • Lednev, V. V. (1996). Bioeffects of weak static and alternating magnetic fields. BioFactors 41:224–232.
  • Liboff, A. R. (1992). The “cyclotron resonance” hypothesis: experimental evidence and theoretical constraints. In: Norden, B., Ramel, C. (Eds.), Interaction Mechanisms of Low-Level Electromagnetic Fields in Living Systems. Oxford: Oxford University Press. pp. 130–147.
  • Liboff, A. R. (1994). The electromagnetic field as a biological variable. In: Frey, A. N., Langes, R. J. On the nat. of electromag. field interact. biol. sys. Austin. pp. 59–72.
  • Martynyuk, V. S., Abu Khada, R. H. (2001). Реакция тучных клеток на действие переменных магнитных полей в условиях in vitro [Response of mast cell on influence of alternating magnetic fields in vitro]. The Scientific Notes of V. Vernadsky Taurida National University, Biology and Chemistry Series, 14:3–7.
  • Martynyuk, V. S., Tseyslyer, Y. V., Temuryants, N. A. (2012). Interference of the mechanisms of influence that weak extremely low frequency electromagnetic fields have on the human body and animals. Atmos Ocean. Phys. 48:832–846.
  • McNamee, D. A., Legros, A. G., Krewski, D. R., et al. (2009). A literature review: The cardiovascular effects of exposure to extremely low frequency electromagnetic fields. Arch. Occup. Environ. Health 82:919–933.
  • Melnik, M., Martunyuk, V., Tsymbalyuk, O., Artemenko, A. (2014). The influence of extremely low-frequency electromagnetic field on increase of intracellular calcium concentration in smooth muscle cells evoked by K+-depolarization. Bull. T. Shevchenko Nat. Univ. Kyiv, Ser.: Prob. Phys. Func. Reg. 1:56–59.
  • Melnyk, M. I., Artemenko, O. Y., Martynyuk, V. S. (2013). The influence of weak low-frequency electromagnetic fields on intracellular calcium concentration of the smooth muscle cells. Sci. Notes Taur. Nat. V.I. Vernadsky Univ., Ser.: Biol. 26:123–132.
  • Miyata, H., Ishizawa, K., Ishido, M., et al. (2012). The effect of a 50-Hz sinusoidal magnetic field on nitric oxide (NO) production by human umbilical vein endothelial cells (HUVECs). J. Phys. Conf. Ser. 344:1–9.
  • Morabito, C., Rovetta, F., Bizzarri, M., et al. (2010). Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: A real-time, single-cell approach. Free Rad. Biol. Med. 48:579–589.
  • Pall, M. L. (2013). Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J. Cell. Mol. Med. 17:958–965.
  • Panagopoulos, D. J., Karabarbounis, A., Margaritis, L. H. (2002). Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 298:95–102.
  • Patruno, A., Amerio, P., Pesce, M., et al. (2010). Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: Potential therapeutic effects in wound healing. Br. J. Dermatol. 162:258–266.
  • Pilla, A. A. (2012). Electromagnetic fields instantaneously modulate nitric oxide signaling in challenged biological systems. Biochem. Biophys. Res. Commun. 426:330–333.
  • Salvatore, J. R., Weitberg, A. B., Mehta, S. (1996). Nonionizing electromagnetic fields and cancer: A review. Oncology 10:563–578.
  • Santini, M. T., Rainaldi, G., Indovina, P. L. (2009). Cellular effects of extremely low frequency (ELF) electromagnetic fields. Int. J. Radiat. Biol. 85:294–313.
  • Saunders, R. D., Jefferys, J. G. R. (2007). A neurobiological basis for ELF guidelines. Health Phys. 92:596–603.
  • Sobko, V. M., Martynyuk, V. S., Shevchenko, V. B., Protopopov, M. V. (2011). Effect of electromagnetic field with 8 Hz frequency on thymocytes nucleuses injury caused by nanostructured silicon and hydrogen peroxide. Sci. Notes Taurida V. I. Vernadsky Nat. Univ. Ser. Biol. Chem. 24:261–267.
  • Sul, A. R., Park, S.-N., Suh, H. (2006). Effects of sinusoidal electromagnetic field on structure and function of different kinds of cell lines. Yonsei Med. J. 47:852–861.
  • Temuryants, N. A., Kostyuk, A. S. (2011). Role of opioid system in the modulation thermonociceptive sensitivity in snails under the action of weak electromagnetic factors. Neurophysiology 43:432–441.
  • Temuryants, N. A., Shekhotkin, A. V., Kaminina, I. B. (1998). The influence of the weak variable magnetic field of extremely low frequency on the infradianrhythmics of physiological systems controlled by epiphysis. Biofizika 43:783–788.
  • Tsymbalyuk, O. V., Martyniuk, V. S. (2011). Influence of extremely low frequency magnetic field on the caused by K+-depolarization and by acetylcholine contraction activity of the intestinal smooth muscles. Phys. Alive 19:20–24.
  • Walleczek, J. (1992). Electromagnetic field effects on cells of the immune system: The role of calcium signaling. FASEB J. 6:3177–3185.
  • Winklhofer, M. (2010). Magnetoreception. J. R. Soc. Interface 7:131–134.
  • Yoshikawa, T., Tanigawa, M., Tanigawa, T., et al. (2000). Enhancement of nitric oxide generation by low frequency electromagnetic field. Pathophysiology 7:131–135.
  • Zabotin, N. A., Zhbankov, G. A. (1999). Ionospheric irregular structure as source of strong variations of background decameter radiation. Geomagn. Aeron. 39:57–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.