257
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Illuminating water and life: Emilio Del Giudice

Pages 113-122 | Received 18 Feb 2015, Accepted 27 Mar 2015, Published online: 22 Jun 2015

References

  • Arani, R. B. I., Del Guidice, E., Preparata, G. (1995). QED coherence and the thermodynamics of the water. Int. J. Mod. Phys. B 9:1813–1841
  • Bakker, H. J., Nienhuys, H. -K. (2002). Delocalization of protons in liquid water. Science 297:587–590
  • Bardelmeyer, G. H. (1973). Electrical conduction in hydrated collagen. I. Conductivity mechanisms. Biopolymers 12:2289–2302
  • Bono, I., Del Giudice, E., Gamberane, L., Henry, M. (2012). Emergence of coherent structure of liquid water. Water 4:510–532
  • Chen, J., Li, X. -Z., Zhang, Q., et al. (2013). Nature of proton transport in a water-filled carbon nanotube and in liquid water. Phys. Chem. Chem. Phys. 15:6344
  • Choi, W., Ulissi, Z. W., Shimizu, S. F. E., et al. (2013). Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes. Nature Communications. 4:2397
  • Deb, A., Reiter, G. F., Sakurai, Y., et al. (2014). Anomalous ground state of the electrons in nanoconfined water. Spring-8 Information 19:2–6
  • Del Giudice. E. (2007). Old and new views on the structure of matter and the special case of living matter. J. Phys. 67:012006
  • Del Giudice, E. (2013). Introductory video. Colours of Water art/science/music festival. Available from: http://www.i-sis.org.uk/coloursofwater/ (accessed 12–28 Mar 2013)
  • Del Guidice, E. (2014). Prometheus: The passionate soul of scientific reason. Water 6:61–71
  • Del Giudice, E., Preparata, G., Vitiello, G. (1988). Water as a free electric dipole laser. Phys. Rev. Lett. 61:1085–1088
  • Del Giudice, E., Spinetti, P. R., Tedeschi, A. (2010). Water dynamics at the root of metamorphosis in living organisms. Water 2:566–586
  • Del Giudice, E., Vitiello, G. (2006). Role of the electromagnetic field in the formation of domains in the process of symmetry-breaking phase transition. Phys. Rev. A 74:022105
  • Dellago, C., Naor, M. M., Hummer, G. (2003). Proton transport through water-filled carbon nanotubes. Phys. Rev. Lett. 90:105901
  • Dong, B., Gwee, L., Salas-de la Cruz, D., et al. (2010). Super proton conductive high-purity Nation nanofibers. Nano. Lett. 10:3785–3790
  • Elia, V., Ausanio, G., De Ninno, A., et al. (2013a). Experimental evidence of stable aggregates of water at room temperature and normal pressure after iterative contact with a Nafion polymer membrane. Water 5:16–26
  • Elia, V., Ausano, G., De Ninno, A., et al. (2014). Experimental evidence of stable water nanostructures at standard pressure and temperature obtained by iterative filtration. Water 5:121–130
  • Elia, V., Napoli, E., Niccoli, M. (2013b). Physical-chemical study of water in contact with a hydrophilic polymer. Nafion. J. Therm. Anal. Calorim. 112:937–944
  • Germano, R., Del Giudice, E., De Ninno, A., et al. (2013). Oxyhydroelectric effect in bi-distilled water. Key. Eng. Mater. 543:455–459
  • Glauber, R. J. (1963). The quantum theory of optical coherence. Phys. Rev. 130:2529–2539
  • Hamashima, T., Mizuse, K., Fuji, A. (2010). Spectral signatures of four-coordinated sites in water clusters: Infrared spectroscopy of phenol–(H2O)n (∼50 ≥ n ≥ ∼20). J. Phys. Chem. 115:620–625
  • Ho, M. W. (2004). Water forms massive exclusion zones. Sci. Soc. 23:50–51
  • Ho, M. W. (2005). First sighting of structured water. Sci. Soc. 28:47–48
  • Ho, M. W. (2006). Collagen water structure revealed. Sci. Soc. 32:15–16
  • Ho, M. W. (2007). The real bioinformatics revolution. Sci. Soc. 33:42–45
  • Ho, M. W. (2008a). The Rainbow and the Worm, the Physics of Organisms, 3rd ed. Singapore: World Scientific
  • Ho, M. W. (2008b). Liquid crystalline water at the interface, just add sunlight for energy and life. Sci. Soc. 39:36–39
  • Ho, M. W. (2010). Cooperative and coherent water. Sci. Soc. 48:6–9
  • Ho, M. W. (2011). Quantum coherent water & life. Sci. Soc. 51:26–29
  • Ho, M. W. (2012a). Living Rainbow H2O. Singapore: World Scientific and Imperial College Press
  • Ho, M. W. (2012b). Superconducting quantum coherent water in nanospace confirmed. Sci. Soc. 55:48–51
  • Ho, M. W. (2012c). Super-conducting liquid crystalline water aligned with collagen fibres in the fascia as acupuncture meridians of traditional Chinese Medicine. For. Immunopathol. Dis. Therap. 2:221–236
  • Ho, M. W. (2013a). Life is water electric. Sci. Soc. 57:43–47
  • Ho, M. W. (2013b). Science & art of water. Sci. Soc. 58:48–51
  • Ho, M. W. (2013c). Non-random directed mutations confirmed. Sci. Soc. 60:30–32
  • Ho, M. W. (2014a). The story of phi parts 1–6. Sci. Soc. 62:24–44
  • Ho, M. W. (2014b). Water is the means, medium, and message of life. Des. Nat. Ecodyn. 9:1–12
  • Ho, M. W. (2014c). Large supramolecular clusters caught on camera – A review. Water 6:1–12
  • Ho, M. W. (2014d). Supramolecular structures in highly dilute solutions required for biological activity. Sci. Soc. 64:48–49
  • Ho, M. W. (2014e). Evolution by natural genetic engineering. Sci. Soc. 63:18–23
  • Ho, M. W., Knight, D. P. (1998). The acupuncture system and the liquid crystalline collagen fibers of the connective tissues. Am. J. Chin. Med. 26:251–263
  • Ho, M. W., Popp, F.-A., Warnke, U. (1994). Bioelectrodynamics and Biocommunication. Singapore: World Scientific
  • Isaacs, E. D., Shukla, A., Platzman, P. M., et al. (1999). Covalency of the hydrogen bond in ice: A direct X-ray measurement. Phys. Rev. Lett. 82:600–603
  • Konovalov, A. (2014). Nanoassociates: Terra incognita. Sci. Russia 1:4–10
  • Konovalov, A. I., Rychkina, I. S. (2014). Formation of nanoassociates as a key to understanding of physicochemical and biological properties of highly dilute aqueous solutions. Russian. Chem. Bull, Int. Edition. 63:1–14
  • Kyakuno, R., Matsuda, R., Yahir, H., et al. (2011). Confined water inside single walled carbon nanotubes: Global phase diagram and effect of finite length. J. Chem. Phys. 134:244501
  • Lo, A., Cardarella, J., Turner, J., Lo, S. Y. (2012). A soft matter state of water and the structures it forms. For. Immunopathol. Dis. Therap. 3:237–252
  • Lo, S. -Y. (1996). Anomalous state of ice. Mod. Phys. Lett. B 10:909–919
  • Lo, S. -Y. (1998). Survey of IE™ clusters. In: Gann, D. L., Lo, S. Y. Double-Helix Water. Las Vegas: D and Y Publishing. pp. 117–159
  • McClare, C. W. F. (1971). Chemical machines, Maxwell’s demon and living organisms. J. Theor. Biol. 30:1–34
  • Madl, P., Del Giudice, E., Voeikov, V. L., et al. (2013). Evidence of coherent dynamics in water droplets of waterfalls. Water 5:57–68
  • Musumeci, F., Scordino, A., Triglia, A. (1999). Europhys. Lett. 47:736–742
  • Novakovskaya, Y. V. (2007). Theoretical estimation of the ionization potential of water in condensed phase. II. Superficial water layers. Prot. Met. 43:22–33
  • Pauling, L. (1935). The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57:2680–2684
  • Pehlke, C. (2013). Laboratory for Optical and Computational Instrumentation, Biomedical Engineering, University of Wisconsin-Madison, Available from: http://loci.wisc.edu/people/carolyn-pehlke. Last accessed 7 March 2013
  • Pollack, G. H. (2013). The Fourth Phase of Water. Seattle, Washington, DC: Ebner & Sons Publishers
  • Qin, X., Yuan, Q., Zhao, Y., et al. (2011). Measurement of the rate of water translocation through carbon nanotubes. Nano. Lett. 11:2173–2177
  • Reiter, G., Burnham, C., Homouz, D., et al. (2006). Anomalous behaviour of proton zero point motion in water confined in carbon nanotubes. Phys. Rev. Lett. 97:247801
  • Reiter, G. F., Kolesnikov, A. I., Paddison, S. J., et al. (2012). Evidence for an anomalous quantum state of protons in nanoconfined water. Phys. Rev. B. 85:045403
  • Ryzhkina, I. S., Murtazina, L. I., Kiseleva, Y. V., Konovalov, A. I. (2009). Properties of supramolecular nanoassociates formed in aqueous solutions of biologically active compounds in low or ultra-low concentrations. Doklady Phys. Chem. 428:196–200
  • Ryzhkina, I. S., Murtazina, L. I., Konovalov, A. I. (2011). Action of the external electromagnetic field is the condition of nanoassociate formation in highly diluted aqueous solutions. Doklady Phys. Chem. 440:201–204
  • Sasaki, N. (1984). Dielectric properties of slightly hydrated collagen: Time-water content superposition analysis. Biopolymers. 23:1725–1734
  • Schmidt-Rohr, K., Chen, Q. (2008). Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 7:75–83
  • Shapiro, J. A. (1997). Genome organization, natural genetic engineering and adaptive mutation. Trends. Genet. 13:98–104
  • Shapiro, J. A. (2014). Physiology of the read-write genome. J. Physiol. 592:2319–2341
  • Spry, D. B., Goun, A., Glusac, K., et al. (2007). Proton transport and the water environment in Nafion fuel cell membranes and AOT reverse micelles. J. Am. Chem. Soc. 129:8122–8130
  • Stoller, P. C., Reiser, K. M., Celliers, P. M., Rubenchik, A. M. (2003). Effects of Structural Modification on Second Harmonic Generation in Collagen. Submitted to SPIE Conference on Visualization and Data Analysis, San Jose, CA, 20–25 January 2003, 4 April 2003, Available from: https://e-reports-ext.llnl.gov/pdf/243951.pdf. Last accessed 7 March 2013
  • Szent-Gyorgyi, A. (1960). Introduction to a Supramolecular Biology. New York: Academic Press
  • Tosi, M., Del Giudice, E. (2013). The principle of minimal stimulus in the dynamics of the living organism. Sci. Soc. 60:26–29
  • Wikipedia. (2012). Second-harmonic Imaging Microscopy. Wikipedia. 15 December 2012, Available from: http://en.wikipedia.org/wiki/Second_harmonic_imaging_microscopy. Last accessed 15 December 2012
  • Wikipedia. (2014). Electrical resistivity and conductivity, Wikipedia, 7 June 2014, Available from: http://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity. Last accessed 7 June 2014
  • Williams, R. M., Zipfel, W. R., Webb, W. W. (2005). Interpreting second-harmonic generation images of collagen 1 fibrils. Biophys. J. 68:1377–1386
  • Zheng, J. M., Wexler, A., Pollack, G. H. (2009). Effect of buffers on aqueous solute-exclusion zones around ion-exchange resins. J. Colloid. Interface Sci. 332:511–514

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.