617
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Magnetic correlates in electromagnetic consciousness

Pages 228-236 | Received 16 Apr 2015, Accepted 29 May 2015, Published online: 06 Apr 2016

References

  • Alberto, D., Busso, L., Crotti, G., et al. (2008). Effects of static and low-frequency alternating magnetic fields on the ionic electrolytic currents of glutamic acid aqueous solutions. Electromagn. Biol. Med. 27:25–39.
  • Aspect. A., Dalibard, J., Roger G. (1982). Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett. 49:1804–1807.
  • Baars, B. J., Edelman, D. B. (2012). Consciousness, biology and quantum hypotheses. Phys. Life. Rev. 9:285–294.
  • Baureus-Koch, C. L. M., Sommarin. M., Persson, B. R. R., et al. (2003). Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics. 24:395–402.
  • Bawin, S. M., Adey, W. R., (1976). Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequencies. Proc. Natl. Acad. Sci. USA. 73:1999–2003.
  • Beason, R. C. (2005). Mechanisms of magnetic orientation in birds. Integrat. Comp. Biol. 45:565–573.
  • Blackman, C. F., Kinney, L. S., House, D. E. et al. (1989). Multiple power-density windows and their possible origin. Bioelectromagnetics. 10:115–128.
  • Blackman, C. F., Blanchard, J. P., Benane, S. G., et al. (1994). Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells. Bioelectromagnetics. 15;239–250.
  • Cavagna, A., Cimarelli, A., Giardina, I., et al. (2010). Scale-free correlations in starling flocks. Proc. Nat. Acad. Sci. USA. 107:11865–11870.
  • Chalmers, D. J. (1995). Facing up to the problem of consciousness. J. Consciousness Stud. 2:200–219.
  • Comisso, N., Del Giudice, E., De Ninno, A., et al. (2006). Dynamics of the ion resonance effect on amino acids absorbed at the interfaces. Bioelectromagnetics. 27:16–25.
  • Couzin, I. (2007). Collective minds. Nature. 445:715.
  • D’Emilio, E., Giuliani, L., Lisi, A., et al. (2014). Lorentz force in water: Evidence that hydronium cyclotron resonance enhances polymorphism. Electromagn. Biol. Med. [Epub ahead of print].
  • Fitzsimmons, R. J., Ryaby, J. T., Magee, F. P., et al. (1995). Combined magnetic fields increase insulin-like growth factor-II in TE-85 human osteosarcoma bone cell cultures. Endocrinology. 136:3100–3106.
  • Flohr, H. (2000). NMDA receptor-mediated computational processes and phenomenal consciousness, In: Metzinger, T. Neuronal Correlates of Consciousness. Empirical and Conceptual Questions., Cambridge: MIT Univ Press, pp. 245–258.
  • Foletti, A., Grimaldim S., Lisi, A., et al. (2013). Bioelectromagnetic medicine: The role of resonance signaling. Electromagn Biol. Med. 32:484–499.
  • Frilot, II C., Carrubba, S., Marino, A. A. (2014). Sensory transduction of weak electromagnetic fields: role of glutamate neurotransmission mediated by NMDA receptors. Neurosci. 258:184–191.
  • Gaetani, R., Ledda, M., Barile, L., et al. (2009). Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic field. Cardiovasc. Res. 82:411–420.
  • Goodman, R., Henderson, A. S. (1988). Exposure of salivary gland cells to low-frequency electromagnetic fields alters polypeptide synthesis. Proc. Natl. Acad. Sci. USA. 85:3928–3932.
  • Hameroff, S. R. (1994). Quantum coherence in microtubules: A neural basis for emergent consciousness? J. Consciousness. Stud. 1:91–118.
  • Hameroff, S. (2012). How quantum brain biology can rescue conscious free will. Front. Integr. Neurosci. 6:93.
  • Hameroff, S., Penrose. R. (2014). Consciousness in the universe: A review of the Orch OR theory. Phys. Life. Rev. 11:39–78.
  • Hemelrijk, C. K., Hildenbrandt, H. (2011). Some causes of the variable shape of flocks of birds. PloS ONE. 6:e22479.
  • Horton, P., Ryaby, J. T., Magee, F. P. (1993). Stimulation of specific neuronal differentiation proteins in PC-12 cells by combined AC/DC magnetic fields. In: Blank, M. Electricity and Magnetism in Biology and Medicine. San Francisco: San Francisco Press. pp. 619–622.
  • Jefferys, J. G. R., Traub, R. D., Whittington, M. A. (1996). Neuronal networks for induced “40 Hz” rhythms. Trends Neurosci. 19:202–208.
  • Jenrow, K. A., Zhang, X., Renehan, W. E., et al. (1998). Weak ELF magnetic field effects on hippocampal rhythmic slow wave activity. Exp. Neurol. 153:328–334.
  • Lednev, V. V., (1991). Possible mechanism for the influence of weak magnetic fields on biological system. Bioelectromagnetics. 12:71–75.
  • Liboff, A. R., Williams, T. Jr., Strong, D. M., et al. (1984). Time-varying magnetic fields: effect on DNA synthesis. Science. 223:818–820.
  • Liboff, A. R. (1985). Geomagnetic cyclotron resonance in living cells. J. Biol. Physics. 13:99–102.
  • Liboff, A. R., (1994). The electromagnetic field as a biological variable. In: Frey, A. H. On the Nature of Electromagnetic Field Interactions with Biological Systems, Austin: R G Landes Co.
  • Liboff, A. R. (2004). Toward an electromagnetic paradigm for biology and medicine. J. Alt. Com. Med. 10:41–47.
  • Liboff, A. R. (2005). A rational biology. Electromagn. Biol. Med. 24: 211–220.
  • Liboff, A. R., (2006). The ion cyclotron resonance hypothesis. In: Greenebaum B, Barnes F, editors, Handbook of Bioelectromagnetism. Boca Raton: CRC Press.
  • Lovely, R. H., Creim, J. A., Miller, D. L., et al. (1993). Behavior of rats in a radial arm maze during exposure to magnetic fields: Evidence for effects of magnesium ion resonance. 15th annual meeting Bioelectromagnetics Society, Abstract EI-6, Los Angeles.
  • Lyskov, Y. B., Chernysev, M. V., Michailov, V. O., et al. (1996). The effect of a magnetic field with the frequency of 50 Hz on behavior in rats depends on the value of the constant magnetic field. Biophysics. 41:881–886.
  • Manikonda, P. K., Rajendra. P., Devandraneth, D., et al. (2007). Influence of extremely low frequency magnetic fields on Ca2+ signaling and NMDA receptor functions in rat hippocampus. Neurosci. Lett. 413:145–149.
  • Marino, A. A., Nilsen, E., Chesson, A. L., Jr, et al. (2004). Effect of low-frequency magnetic fields on brain electrical activity in human subjects. Clin. Neurophysiol. 115:1195–1201.
  • Martin, H., Lindauer, M. (1977). The effect of the earth’s magnetic field on gravity orientation in the honey bee (Apis mellifica). J. Comp. Physiol. A. 122:145–187.
  • McFadden, J. (2001). Quantum Evolution. New York: Norton.
  • McFadden, J. (2002). Synchronous firing and its influence on the brain’s electromagnetic field. J. Consciousness. Stud. 9:23–50.
  • McFadden, J. (2007). Conscious electromagnetic (CEMI) field theory. Neuroquantology. 5:262–270.
  • McFadden. J. (2013). The CEMI field theory: Closing the loop. J. Consciousness. Stud. 20:153–168.
  • Pazur, A. (2004). Characterization of weak magnetic field effects in an aqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltammetry. Biomagn. Res. and Tech. 2:8.
  • Penrose, R. (1994). Shadows of the Mind. Oxford: Oxford University Press.
  • Penrose, R. (1989). The Emperor’s New Mind. Oxford: Oxford University Press.
  • Pockett, S. (2000). The Nature of Consciousness: A Hypothesis. New York: Wireless Club Press.
  • Pockett, S. (2012). The electromagnetic field theory of consciousness: a testable hypothesis about the characteristics of conscious as opposed to non-conscious fields. J. Consciousness. Stud. 19:191–223.
  • Pockett, S. (2013). Field theories of consciousness. Scholarpedia. 8:4951, revision #137909. doi:10.4249/Scholarpedia.4951
  • Smith, S. D., Liboff, A. R., McLeod, B. R., et al. (1992). Effects of ion resonance tuned magnetic fields on N-18 neuroblastoma cells. In: Allen, M. J., Cleary, A. F., Sowers, A. E., Shillady, D. D. Charge and Field Effects in Biosystems-3, Birkhauser, Boston, pp. 263–271.
  • Takashima, S., Onaral, B., Schwan, H. P. (1979). Effects of modulated RF energy on the EEG of mammalian brains: Effects of acute and chronic irradiations. Radiat. Environ. Bioph. 16:15–27.
  • Thomas, J. R., Schrot, J., Liboff, A. R. (1986). Low-intensity magnetic fields alter operant behavior in rats. Bioelectromagnetics. 7:349–357.
  • Tomoni, G., Edelman, G. M. (1998). Consciousness and complexity. Science. 282:1846–1851.
  • Vorobyov, V. V., Galchenko, A. A., Kukushkin, N. I., et al. (1997). Effects of weak microwave fields amplitude modulated at ELF on EEG of symmetric brain areas in rats. Bioelectromagnetics. 18:293–298.
  • Vorobyov, V. V., Sosunov, E. A., Kukushkin, N. I., et al. (1998). Weak combined magnetic field affects basic and morphine-induced rat’s EEG. Brain Res. 781:182–187.
  • Vorobyov, V. V., Janac, B., Pesic, V., et al. (2010). Repeated exposure to low-level extremely low frequency-modulated microwaves affects cortex-hypothalamus interplay in freely moving rats: EEG study. Int. J. Radiat. Biol. 86:376–383.
  • Walker, M. M., Bitterman, M. E. (1989). Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J. Exp. Biol. 145:489–494.
  • Walleczek, J., Liburdy, R. P. (1990). Nonthermal 60 Hz sinusoidal magnetic field exposure enhances 45Ca2+ uptake in rat thymocytes: Dependence on mitogen activation. FEBS Lett. 271:157–160.
  • Zhadin, M. N., Novikov, V. V., Barnes, F. S., et al. (1998). Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solutions. Bioelectromagnetics. 19:41–45.
  • Zhadin, M. N., Deryugina, O. N., Pisachenko, T. M. (1999). Influence of combined DC and AC magnetic fields on rat behavior. Bioelectromagnetics. 20:378–386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.