265
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Effects of pre- and postnatal exposure to extremely low-frequency electric fields on mismatch negativity component of the auditory event-related potentials: Relation to oxidative stress

, , , , , & show all
Pages 245-259 | Received 16 Mar 2015, Accepted 23 Jul 2015, Published online: 12 Apr 2016

References

  • Akdag, M. Z., Dasdag, S., Ulukaya, E., et al. (2010). Effects of extremely low-frequency magnetic field on caspase activities and oxidative stress values in rat brain. Biol. Trace. Elem. Res. 138:238–249.
  • Akpinar, D., Ozturk, N., Ozen, S., et al. (2012). The effect of different strengths of extremely low-frequency electric fields on antioxidant status, lipid peroxidation, and visual evoked potentials. Electromagn. Biol. Med. 31:436–448.
  • Aslan, M., Yucel, I., Ciftcioglu, A., et al. (2007). Corneal protein nitration in experimental uveitis. Exp. Biol. Med. 232:1308–1313.
  • Astikainen, P., Stefanics, G., Nokia, M., et al. (2011). Memory-based mismatch response to frequency changes in rats. Plos One 6:(9):e24208.
  • Aydin, M. A., Comlekci, S., Ozguner, M., et al. (2006). The influence of continuous exposure to 50 Hz electric field on nerve regeneration in a rat peroneal nerve crush injury model. Bioelectromagnetics 27:401–413.
  • Benov, L. C., Antonov, P. A., Ribarov, S. R. (1994). Oxidative damage of the membrane-lipids after electroporation. Gen. Physiol. Biophys. 13:85–97.
  • Bernhardt, J. (1979). Direct influence of electromagnetic-fields on nerve-cells and muscle-cells of man within the frequency-range of 1-Hz To 30 Mhz. Radiat. Environ. Biophys. 16:309–323.
  • Blumenthal, N. C., Ricci, J., Breger, L., et al. (1997). Effects of low-intensity AC and/or DC electromagnetic fields on cell attachment and induction of apoptosis. Bioelectromagnetics 18:264–272.
  • Cerretelli, P., Malaguti, C. (1979). Research carried on in Italy by enel on the effects of high voltage electric fields. Rev. Gen. Elect. (spec. iss.). 65–74.
  • Chu, L. Y., Lee, J. H., Nam, Y. S., et al. (2011). Extremely low frequency magnetic field induces oxidative stress in mouse cerebellum. Gen. Physiol. Biophys. 30:415–421.
  • Ciejka, E., Kleniewska, P., Skibska, B., et al. (2011). Effects of extremely low frequency magnetic field on oxidative balance in brain of rats. J. Physiol. Pharmacol. 62:657–661.
  • Consales, C., Merla, C., Marino, C., et al. (2012). Electromagnetic fields, oxidative stress, and neurodegeneration. Int. J. Cell. Biol. 2012: 683897.
  • Cook, M. R., Graham, C., Cohen, H. D., et al. (1992). A replication study of human exposure to 60-Hz fields: Effects on neurobehavioral measures. Bioelectromagnetics 13:261–285.
  • Cossarizza, A., Capri, M., Salvioli, S. (1993). Electromagnetic fields affect cell proliferation and cytokine production in human cells. In: Blank, M. Electricity and Magnetism in Biology and Medicine. San Francisco: San Francisco Press. pp. 640–642.
  • Cridland, N. A. (1993). Electromagnetic fields and cancer: A review of relevant cellular studies. Chilton, UK: National Radiological Protection Board, Report NRPB-R256.
  • Csepe, V., Karmos, G., Molnar, M. (1987). Evoked-potential correlates of stimulus deviance during wakefulness and sleep in cat – Animal-model of mismatch negativity. Electroen. Clin. Neurophysiol. 66:571–578.
  • Cui, Y., Ge, Z., Rizak, J. D., et al. (2012). Deficits in water maze performance and oxidative stress in the hippocampus and striatum induced by extremely low frequency magnetic field exposure. PLoS One 7:32196.
  • Dalle-Donne, I., Rossi, R., Giustarini, D., et al. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta 329:23–38.
  • Demiralp, T., Yordanova, J., Kolev, V., et al. (1999). Time frequency analysis of single-sweep event-related potentials by means of fast wavelet transform. Brain Lang. 66:129–145.
  • Di Loreto, S., Falone, S., Caracciolo, V., et al. (2009). Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J. Cell. Physiol. 219:334–343.
  • Duncan, C. C., Barry, R. J., Connolly, J. F., et al. (2009). Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin. Neurophysiol. 120:1883–1908.
  • Dundar, B., Cesur, G., Comlekci, S. (2009). The effect of the prenatal and postnatal long-term exposure to 50 Hz electric field on growth, pubertal development and Igf-1 levels in female wistar rats. Toxicol. Ind. Health. 25:479–487.
  • Eriksson, J., Villa, A. E. P. (2005). Event-related potentials in an auditory oddball situation in the rat. Biosystems 79:207–212.
  • Fam, W. Z. (1980). Long-term biological effects of very intense 60-Hz electric field on mice. IEEE Trans. Biomed. Eng. 27:376–381.
  • Floderus, B., Persson, T., Stenlund, C., et al. (1993). Occupational exposure to electromagnetic fields in relation to leukemia and brain tumors: A case-control study in Sweden. Cancer Causes Control 4:465–476.
  • Foroozandeh, E., Derakhshan-Barjoei, P., Jadidi, M. (2013). Toxic effects of 50 Hz electromagnetic field on memory consolidation in male and female mice. Toxicol. Ind. Health. 29:293–299.
  • Fukui, K., Omoi, N. O., Hayasaka, T., et al. (2002). Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann. NY Acad. Sci. 959:275–284.
  • Gok, D. K., Akpinar, D., Yargicoglu, P., et al. (2014). Effects of extremely low-frequency electric fields at different intensities and exposure durations on mismatch negativity. Neuroscience 272:154–166.
  • Gómez, M. J. R., De la Peña, L., Pastor, J. M., et al. (2001). 25 Hz electromagnetic field exposure has no effect on cell cycle distribution and apoptosis in U-937 and HCA-2/1cch cells. Bioelectrochemistry 53:137–140.
  • Gona, A. G., Yu, M. C., Gona, O., et al. (1993). Effects of 60 Hz electric and magnetic fields on the development of the rat cerebellum. Bioelectromagnetics 14:433–447.
  • Graham, C., Cook, M. R., Cohen, H. D., et al. (1994). Dose-response study of human exposure to 60-Hz electric fields and magnetic fields. Bioelectromagnetics 15:447–463.
  • Graham, C., Cook, M. R., Cohen, H. D., et al. (1999). Human exposure to 60-Hz magnetic fields: Neurophysiological effects. Int. J. Psychophysiol. 33:169–175.
  • Grau, C., Polo, M. D., Yago, E., et al. (2001). Auditory sensory memory as indicated by mismatch negativity in chronic alcoholism. Clin. Neurophysiol. 112:728–731.
  • Guler, G., Atalay, N. S., Ozogul, C., et al. (1996). Biochemical and structural approach to collagen synthesis under electric fields. Gen. Physiol. Biophys. 15:429–440.
  • Guler, G., Seyhan, N., Aricioglu, A. (2006). Effects of static and 50 Hz alternating electric fields on superoxide dismutase activity and tbars levels in guinea pigs. Gen. Physiol. Biophys. 25:177–193.
  • Guler, G., Turkozer, Z., Ozgur, E., et al. (2009a). Antioxidants alleviate electric field-induced effects on lung tissue based on assays of heme oxygenase-1, protein carbonyl content, malondialdehyde, nitric oxide, and hydroxyproline. Sci. Total Environ. 407:1326–1332.
  • Guler, G., Turkozer, Z., Ozgur, E., et al. (2009b). Protein oxidation under extremely low frequency electric field in guinea pigs. Effect of N-acetyl-L-cysteine treatment. Gen. Physiol. Biophys. 28:47–55.
  • Guler, G., Turkozer, Z., Seyhan, N. (2007). Electric field effects on guinea pig serum: The role of free radicals. Electromagn. Biol. Med. 26:207–223.
  • Hansson, H. A. (1981). Purkinje nerve-cell changes caused by electric fields – Ultrastructural studies on long-term effects on rabbits. Med Biol. 59:103–110.
  • Harakawa, S., Inoue, N., Hori, T., et al. (2005). Effects of 50 Hz electric field on plasma lipid peroxide level and antioxidant activity in rats. Bioelectromagnetics 26:589–594.
  • Holian, O., Astumian, R. D., Lee, R. C., et al. (1996). Protein kinase C activity is altered in Hl60 cells exposed to 60 Hz ac electric fields. Bioelectromagnetics 17:504–509.
  • International Commission on Non-Ionizing Radiation Protection (1998). Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (Up to 300 GHz). Health Phys. 74:494–522.
  • Ivancsits S., Diem E., Jahn O., Rudiger H. W. (2003). Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int. Arch. Occup. Environ. Health 76:431–436.
  • Jacobsen, T., Schroger, E. (2001). Is there pre-attentive memory-based comparison of pitch? Psychophysiol. 38:723–727.
  • Jadidi, M., Firoozabadi, S. M., Rashidy-Pour, A., et al. (2007). Acute exposure to a 50 Hz magnetic field impairs consolidation of spatial memory in rats. Neurobiol. Learn. Mem. 88:387–392.
  • Jaffe, R. A., Laszewski, B. L., Carr, D. B., Phillips, R. D. (1980). Chronic exposure to a 60-Hz electric field: Effects on synaptic transmission and peripheral nerve function in the rat. Bioelectromagnetics 1:131–147.
  • Janać, B., Tovilović, G., Tomić, M., et al. (2009). Effect of continuous exposure to alternating magnetic field (50 Hz, 0.5 mT) on serotonin and dopamine receptors activity in rat brain. Gen. Physiol. Biophys. 28:41–46.
  • Javitt, D. C., Steinschneider, M., Schroeder, C. E., et al. (1994). Detection of stimulus deviance within primate auditory cortex: Intra cortical mechanisms of mismatch negativity (Mmn) generation. Brain Res. 667: 92–200.
  • Juutilainen, J. 2005. Developmental Effects Of Electromagnetic Fields. Bioelectromagnetics. 26:S107–S115.
  • Kheifets, L., Renew, D., Sias, G., et al. (2010). Extremely low frequency electric fields and cancer: Assessing the evidence. Bioelectromagnetics 31:89–101.
  • Knickerbocker, G. G., Kouwenhoven, W. B., Barnes, H. C. (1967). Exposure of mice to a strong AC electric field – An experimental study. IEEE Trans. Power. Appar. Syst. 86: 498–505.
  • Komaki, A., Khalili, A., Salehi, I., et al. (2014). Effects of exposure to an extremely low frequency electromagnetic field on hippocampal long-term potentiation in rat. Brain Res. 20:1–8.
  • Kraus, N., Mcgee, T., Littman, T.,et al. (1994). Non-primary auditory thalamic representation of acoustic change. J Neurophysiol. 72:1270–1277.
  • Lee, B. C., Johng, H. M., Lim, J. K., et al. (2004). Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: A chemiluminescence study. J. Photochem. Photobiol. B. 73:43–48.
  • Linka, T., Muller, B. W., Bender, S., et al. (2005). The intensity dependence of auditory evoked erp components predicts responsiveness to reboxetine treatment in major depression. Pharmacopsychiatry 38:139–143.
  • Mahlum, D. D., Sikov, M. R., Hackett, P. L., Andrew, F. D. (1978). Developmental toxicology of energy-related pollutants. Conf771017, Springfield, VA, NTIS.
  • Manikonda, P. K., Rajendra, P., Devendranath, D., et al. (2007). Influence of extremely low frequency magnetic fields on Ca2+ signaling and NMDA receptor functions in rat hippocampus. Neurosci. Lett. 413:145–149.
  • Manikonda, P. K., Rajendra, P., Devendranath, D., et al. (2014). Extremely low frequency magnetic fields induce oxidative stress in rat brain. Gen. Physiol. Biophys. 33:81–90.
  • Margonato, V., Veicsteinas, A., Conti, R., et al. (1993). Biologic effects of prolonged exposure to elf electromagnetic fields in rats. I. 50 Hz electric fields. Bioelectromagnetics 14:479–493.
  • Marino, A. A., Becker, R. O., Ullrich, B. (1976). The effect of continuous exposure to low frequency electric fields on three generations of mice: A pilot study. Experientia 32:565–566.
  • Marino, A. A., Berger, T. J., Mitchell, J. T., et al. (1983). Electric field effects in selected biologic systems. Ann. NY Acad. Sci. 405:436–444.
  • Marino, A. A., Cullen, J. M., Reichmanis, M., et al. (1980). Sensitivity to change in electrical environment: A new bioelectric effect. Am. J. Physiol. 239:R424–R427.
  • Martínez, M.A., Úbeda, A., Cid, M.A., Trillo, M.Á. (2012). The proliferative response of NB69 human neuroblastoma cells to a 50 Hz magnetic field is mediated by ERK1/2 signaling. Cell. Physiol. Biochem. 29:675–686.
  • Matsumoto, K., Yobimoto, K., Huong, N. T., et al. (1999). Psychological stress-induced enhancement of brain lipid peroxidation via nitric oxide systems and its modulation by anxiolytic and anxiogenic drugs in mice. Brain Res. 839:74–84.
  • Miller, M. W., Dooley, D. A., Cox, C., Carstensen, E. L. (1983). On the mechanism of 60-Hz electric field induced effects in pisum sativum L. roots: Vertical field exposures. Radiat. Environ. Biophys. 22:293–302.
  • Naatanen, R., Gaillard, A. W., Mantysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychol. (Amst). 42:313–329.
  • Naatanen, R., Kujala, T., Escera, C. (2012). The mismatch negativity (Mmn) – A unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin. Neurophysiol. 123:424–458.
  • Naatanen, R., Kujala, T., Kreegipuu, K., et al. (2011). The mismatch negativity: An index of cognitive decline in neuropsychiatric and neurological diseases and in ageing. Brain 134:3432–3450.
  • Nakamura, T., Michie, P. T., Fulham, W. R., et al. (2011). Epidural auditory event-related potentials in the rat to frequency and duration deviants: Evidence of mismatch negativity? Front. Psychol. 2:367.
  • Pafkova, H. (1985). Possible embryotropic effect of the electric and magnetic component of the field of industrial frequency. Pracov. Lek. 37: 153–158.
  • Picton, T. W. (1992). The P300 wave of the human event-related potential. J. Clin. Neurophysiol. 9:456–479.
  • Picton, T. W., Bentin, S., Berg, P., et al. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology 37:127–152.
  • Portet, R., Cabanes, J. (1988). Development of young-rats and rabbits exposed to a strong electric-field. Bioelectromagnetics 9:95–104.
  • Repacholi, M. H., Greenebaum, B. (1999). Interaction of static and extremely low frequency electric and magnetic fields with living systems: Health effects and research needs. Bioelectromagnetics 20:133–160.
  • Reznick, A. Z., Packer, L. (1994). Oxidative damage to proteins: Spectrophotometric method for carbonyl assay. Methods Enzymol 223:357–363.
  • Robertson, D., Miller, M. W., Cox, C., et al. (1981). Inhibition and recovery of growth-processes in roots of pisum sativum L exposed to 60-Hz electric fields. Bioelectromagnetics 2:329–340.
  • Rommereim, D. N., Kaune, W. T., Anderson, L. E., Sikov, M. R. (1989). Rats reproduce and rear litters during chronic exposure to 150-Kv/M, 60-Hz electric fields. Bioelectromagnetics 10:385–389.
  • Rommereim, D. N., Kaune, W. T., Buschbom, R. L., et al. (1987). Reproduction and development in rats chronologically exposed to 60-Hz electric fields. Bioelectromagnetics 8:243–258.
  • Romodanova, E. A., Paranich, A. V., Chaikina, L. A. (1990). Effect of chronic effect of the electrostatic field on various biochemical indicators of the tissues. Fiziol Zh. 36: 30–34.
  • Ruusuvirta, T., Korhonen, T., Arikoski, J., Kivirikko, K. (1996). Erps to pitch changes: A result of reduced responses to standard tones in rabbits. Neuroreport 7:413–416.
  • Ruusuvirta, T., Lipponen, A., Pellinen, E., et al. (2013). Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats. Plos One 8:(1):e54624.
  • Ruusuvirta, T., Penttonen, M., Korhonen, T. (1998). Auditory cortical event-related potentials to pitch deviances in rats. Neurosci. Lett. 248:45–48.
  • Salzinger, K., Freimark, S., Mccullough, M., et al. (1990). Altered operant-behavior of adult-rats after perinatal exposure to a 60-Hz electromagnetic field. Bioelectromagnetics 11:105–116.
  • Seto, Y. J., Majeau-Chargois, D., Lymangrover, J. R., et al. (1984). Investigation of fertility and in utero effects in rats chronically exposed to a high-intensity 60-Hz electric field. IEEE Trans. Biomed. Eng. 31:693–702.
  • Sienkiewicz, Z. J., Cridland, N. A., Kowalczuk, C. I., Saunders, R. D. (1993). Biological Effects of Electromagnetic Fields and Radiation. Oxford: Oxford University.
  • Sikov, M. R., Montgomery, L. D., Smith, L. G., Phillips, R. D. (1984). Studies on prenatal and postnatal development in rats exposed to 60-Hz electric fields. Bioelectromagnetics 5:101–112.
  • Sikov, M. R., Rommereim, D. N., Beamer, J. L., et al. (1987). Developmental studies of Hanford miniature swine exposed to 60-Hz electric fields. Bioelectromagnetics 8:229–242.
  • Stadtman, E. R., Oliver, C. N. (1991). Metal-catalyzed oxidation of proteins – Physiological consequences. J. Biol. Chem. 266:2005–2008.
  • Stern, S., Laties, V. G., Stancampiano, C. V., et al. (1983). Behavioral detection of 60-Hz electric-fields by rats. Bioelectromagnetics 4:215–247.
  • Stoian, I., Oros, A., Moldoveanu, E. (1996). Apoptosis and free radicals. Biochem. Mol. Med. 59:93–97.
  • Tenforde, T. S. (1991). Biological interactions of extremely low-frequency electric and magnetic fields. Bioelectrochem. Bioener. 25:1–17.
  • Tenforde, T. S. (1992). Biological interactions and potential health effects of extremely-low-frequency magnetic fields from power lines and other common sources. Ann. Rev. Public. Health. 13:173–196.
  • Tenforde, T. S. (1993). Cellular and molecular pathways of extremely low-frequency electromagnetic field interactions with living systems. In: Blank, M., Electricity and Magnetism in Biology and Medicine. San Francisco: San Francisco Press. 1–8.
  • Tenforde, T. S. (1996). Interaction of ELF magnetic fields with living systems. In: Polk, C., Postow, E. Biological Effects of Electromagnetic Fields. Boca Raton: CRC Press. 185–230.
  • Tikhonravov, D., Neuvonen, T., Pertovaara, A., et al. (2008). Effects of an NMDA-receptor antagonist MK-801 on an MMN-like response recorded in anesthetized rats. Brain Res. 1203:97–102.
  • Tikhonravov, D., Neuvonen, T., Pertovaara, A., et al. (2010). Dose-related effects of memantine on a mismatch negativity-like response in anesthetized rats. Neuroscience 167:1175–1182.
  • Umbricht, D., Vyssotki, D., Latanov, A., et al. (2005). Deviance-related electrophysiological activity in mice: Is there mismatch negativity in mice? Clin. Neurophysiol. 116:353–363.
  • Valberg, P. A., Kavet, R., Rafferty, C. N. (1997). Can low-level 50/60 Hz electric and magnetic fields cause biological effects? Radiat. Res. 148:2–21.
  • Watanabe, Y., Nakagawa, M., Miyakoshi, Y. (1997). Enhancement of lipid peroxidation in the liver of mice exposed to magnetic fields. Ind. Health. 35:285–290.
  • Yokus, B., Cakir, D. U., Akdag, M. Z., et al. (2005). Oxidative dna damage in rats exposed to extremely low frequency electro magnetic fields. Free Radic. Res. 39:317–323.
  • Yu, M. C., Gona, A. G., Gona, O., et al. (1993). Effects of 60 Hz electric and magnetic fields on maturation of the rat neopallium. Bioelectromagnetics 14:449–458.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.