749
Views
34
CrossRef citations to date
0
Altmetric
Review Article

Effect of radiofrequency radiation in cultured mammalian cells: A review

&
Pages 265-301 | Received 11 Feb 2015, Accepted 12 Jul 2015, Published online: 06 Apr 2016

References

  • Ahlers, M. T., Ammermuller, J. (2014). No influence of acute RF exposure (GSM-900, GSM-1800, and UMTS) on mouse retinal ganglion cell responses under constant temperature conditions. Bioelectromagnetics 35:16–29.
  • Antonopoulos, A., Eisenbrandt, H., Obe, G. (1997). Effects of high-frequency electromagnetic fields on human lymphocytes in vitro. Mutat. Res. 395:209–214.
  • Baan, R., Grosse, Y., Lauby-Secretan, B., et al. (2011). Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 12:624–626.
  • Balcer-Kubiczek, E. K., Harrison, G. H. (1985). Evidence for microwave carcinogenesis in vitro. Carcinogenesis 6:859–864.
  • Balcer-Kubiczek, E. K., Harrison, G. H. (1989). Induction of neoplastic transformation in C3H/10T1/2 cells by 2.45-GHz microwaves and phorbol ester. Radiat. Res. 117:531–537.
  • Ballardin, M., Tusa, I., Fontana, N., et al. (2011). Non-thermal effects of 2.45 GHz microwaves on spindle assembly, mitotic cells and viability of Chinese hamster V-79 cells. Mutat. Res. 716:1–9.
  • Banik, S., Bandyopadhyay, S., Ganguly, S. (2003). Bioeffects of microwave–a brief review. Bioresour. Technol. 87:155–159.
  • Baohong, W., Jiliang, H., Lifen, J., et al. (2005). Studying the synergistic damage effects induced by 1.8 GHz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro. Mutat. Res. 578:149–157.
  • Baohong, W., Lifen, J., Lanjuan, L., et al. (2007). Evaluating the combinative effects on human lymphocyte DNA damage induced by ultraviolet ray C plus 1.8 GHz microwaves using comet assay in vitro. Toxicology 232:311–316.
  • Behari, J. (2010). Biological responses of mobile phone frequency exposure. Indian J. Exp. Biol. 48:959–981.
  • Belyaev, I. Y., Hillert, L., Protopopova, M., et al. (2005). 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1 foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics 26:173–184.
  • Belyaev, I. Y., Markova, E., Hillert, L., et al. (2009). Microwaves from UMTS/GSM mobile phones induce long-lasting inhibition of 53BP1/gamma-H2AX DNA repair foci in human lymphocytes. Bioelectromagnetics 30:129–141.
  • Beneduci, A., Chidichimo, G., Tripepi, S., et al. (2007). Antiproliferative effect of millimeter radiation on human erythromyeloid leukemia cell line K562 in culture: Ultrastructural- and metabolic-induced changes. Bioelectrochemistry. 70:214–220.
  • Beneduci, A., Filippelli, L., Cosentino, K., et al. (2012). Microwave induced shift of the main phase transition in phosphatidylcholine membranes. Bioelectrochemistry 84:18–24.
  • Bisht, K. S., Moros, E. G., Straube, W. L., et al. (2002). The effect of 835.62 MHz FDMA or 847.74 MHz CDMA modulated radiofrequency radiation on the induction of micronuclei in C3H 10T(1/2) cells. Radiat. Res. 157:506–515.
  • Bourthoumieu, S., Magnaudeix, A., Terro, F., et al. (2013). Study of p53 expression and post-transcriptional modifications after GSM-900 radiofrequency exposure of human amniotic cells. Bioelectromagnetics 34:52–60.
  • Brescia, F., Sarti, M., Massa, R., et al. (2009). Reactive oxygen species formation is not enhanced by exposure to UMTS 1950 MHz radiation and co-exposure to ferrous ions in Jurkat cells. Bioelectromagnetics 30:525–535.
  • Buttiglione, M., Roca, L., Montemurno, E., et al. (2007). Radiofrequency radiation (900 MHz) induces Egr-1 gene expression and affects cell-cycle control in human neuroblastoma cells. J. Cell. Physiol. 213:759–767.
  • Byus, C. V., Kartun, K., Pieper, S., et al. (1988). Increased ornithine decarboxylase activity in cultured cells exposed to low energy modulated microwave fields and phorbol ester tumor promoters. Cancer Res. 48:4222–4226.
  • Calabro, E., Condello, S., Curro, M., et al. (2012). Modulation of heat shock protein response in SH-SY5Y by mobile phone microwaves. World J. Biol. Chem. 3:34–40.
  • Campisi, A., Gulino, M., Acquaviva, R., et al. (2010). Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field. Neurosci. Lett. 473:52–55.
  • Cao, Y., Zhang, W., Lu, M. X., et al. (2009). 900-MHz microwave radiation enhances gamma-ray adverse effects on SHG44 cells. J. Toxicol. Environ. Health A. 72:727–732.
  • Caraglia, M., Marra, M., Mancinelli, F., et al. (2005). Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of the multi-chaperone complex in human epidermoid cancer cells. J. Cell Physiol. 204:539–548.
  • Chauhan, V., Mariampillai, A., Bellier, P. V., et al. (2006a). Gene expression analysis of a human lymphoblastoma cell line exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field. Radiat. Res. 165:424–429.
  • Chauhan, V., Mariampillai, A., Gajda, G. B., et al. (2006b). Analysis of proto-oncogene and heat-shock protein gene expression in human derived cell-lines exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field. Int. J. Radiat. Biol. 82:347–354.
  • Chauhan, V., Mariampillai, A., Kutzner, B. C., et al. (2007a). Evaluating the biological effects of intermittent 1.9 GHz pulse-modulated radiofrequency fields in a series of human-derived cell lines. Radiat. Res. 167:87–93.
  • Chauhan, V., Qutob, S. S., Lui, S., et al. (2007b). Analysis of gene expression in two human-derived cell lines exposed in vitro to a 1.9 GHz pulse-modulated radiofrequency field. Proteomics 7:3896–3905.
  • Chen, C., Ma, Q., Liu, C., et al. (2014). Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells. Sci. Rep. 4:5103.
  • Ciaravino, V., Meltz, M. L., Erwin, D. N. (1987). Effects of radiofrequency radiation and simultaneous exposure with mitomycin C on the frequency of sister chromatid exchanges in Chinese hamster ovary cells. Environ. Mutagen. 9:393–399.
  • Ciaravino, V., Meltz, M. L., Erwin, D. N. (1991). Absence of a synergistic effect between moderate-power radio-frequency electromagnetic radiation and adriamycin on cell-cycle progression and sister-chromatid exchange. Bioelectromagnetics 12:289–298.
  • Cleary, S. F., Liu, L. M., Merchant, R. E. (1990a). Glioma proliferation modulated in vitro by isothermal radiofrequency radiation exposure. Radiat. Res. 121:38–45.
  • Cleary, S. F., Liu, L. M., Merchant, R. E. (1990b). In vitro lymphocyte proliferation induced by radio-frequency electromagnetic radiation under isothermal conditions. Bioelectromagnetics 11:47–56.
  • Cleary, S. F., Cao, G., Liu, L. M., et al. (1997). Stress proteins are not induced in mammalian cells exposed to radiofrequency or microwave radiation. Bioelectromagnetics 18:499–505.
  • Critchley, D. R., Vicker, M. G. (2013). Glycolipids as membrane receptors important in growth regulation and cell-cell interactions: Cell Surface Reviews. In: Poste, G., Nicolson, G. L. Dynamic Aspects of Cell Surface Organization. Vol. 3. Amsterdam: Elsevier North Holland. pp. 307–370.
  • Czyz, J., Guan, K., Zeng, Q., et al. (2004). High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics 25:296–307.
  • d’Ambrosio, G., Massa, R., Scarfi, M. R., et al. (2002). Cytogenetic damage in human lymphocytes following GMSK phase modulated microwave exposure. Bioelectromagnetics 23:7–13.
  • Desta, A. B., Owen, R. D., Cress, L. W. (2003). Non-thermal exposure to radiofrequency energy from digital wireless phones does not affect ornithine decarboxylase activity in L929 cells. Radiat. Res. 160:488–491.
  • Diem, E., Schwarz, C., Adlkofer, F., et al. (2005). Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat. Res. 583:178–183.
  • Donnellan, M., McKenzie, D. R., French, P. W. (1997). Effects of exposure to electromagnetic radiation at 835 MHz on growth, morphology and secretory characteristics of a mast cell analogue, RBL-2H3. Cell. Biol. Int. 21:427–439.
  • Esmekaya, M. A., Aytekin, E., Ozgur, E., et al. (2011). Mutagenic and morphologic impacts of 1.8GHz radiofrequency radiation on human peripheral blood lymphocytes (hPBLs) and possible protective role of pre-treatment with Ginkgo biloba (EGb 761). Sci. Total Environ. 410-411:59–64.
  • Esmekaya, M. A., Seyhan, N., Kayhan, H., et al. (2013). Investigation of the effects of 2.1 GHz microwave radiation on mitochondrial membrane potential (DeltaPsim), apoptotic activity and cell viability in human breast fibroblast cells. Cell Biochem. Biophys. 67:1371–1378.
  • Franzellitti, S., Valbonesi, P., Ciancaglini, N., et al. (2010). Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8 GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay. Mutat. Res. 683:35–42.
  • French, P. W., Penny, R., Laurence, J. A., et al. (2001). Mobile phones, heat shock proteins and cancer. Differentiation 67:93–97.
  • French, P. W., Donnellan, M., McKenzie, D. R. (1997). Electromagnetic radiation at 835 MHz changes the morphology and inhibits proliferation of a human astrocytoma cell line. Bioelectrochem. Bioenerg. 43:13–18.
  • Friedman, J., Kraus, S., Hauptman, Y., et al. (2007). Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem. J. 405:559–568.
  • Garaj-Vrhovac, V., Fucic, A., Horvat, D. (1992). The correlation between the frequency of micronuclei and specific chromosome aberrations in human lymphocytes exposed to microwave radiation in vitro. Mutat. Res. 281:181–186.
  • Garaj-Vrhovac, V., Horvat, D., Koren, Z. (1990). The effect of microwave radiation on the cell genome. Mutat. Res. 243:87–93.
  • Garaj-Vrhovac, V., Horvat, D., Koren, Z. (1991). The relationship between colony-forming ability, chromosome aberrations and incidence of micronuclei in V79 Chinese hamster cells exposed to microwave radiation. Mutat. Res. 263:143–149.
  • Gerner, C., Haudek, V., Schandl, U., et al. (2010). Increased protein synthesis by cells exposed to a 1,800-MHz radio-frequency mobile phone electromagnetic field, detected by proteome profiling. Int. Arch. Occup. Environ. Health. 83:691–702.
  • Goswami, P. C., Albee, L. D., Parsian, A. J., et al. (1999). Proto-oncogene mRNA levels and activities of multiple transcription factors in C3H 10T 1/2 murine embryonic fibroblasts exposed to 835.62 and 847.74 MHz cellular phone communication frequency radiation. Radiat. Res. 151:300–309.
  • Gul, A., Celebi, H., Ugras, S. (2009). The effects of microwave emitted by cellular phones on ovarian follicles in rats. Arch. Gynecol. Obstet. 280:729–733.
  • Gurisik, E., Warton, K., Martin, D. K., et al. (2006). An in vitro study of the effects of exposure to a GSM signal in two human cell lines: monocytic U937 and neuroblastoma SK-N-SH. Cell Biol. Int. 30:793–799.
  • Harvey, C., French, P. W. (2000). Effects on protein kinase C and gene expression in a human mast cell line, HMC-1, following microwave exposure. Cell Biol. Int. 23:739–748.
  • Heath, J. (2001). Principles of Cell Proliferation. Oxford: Blackwell Science Ltd.
  • Higashikubo, R., Ragouzis, M., Moros, E. G., et al. (2001). Radiofrequency electromagnetic fields do not alter the cell cycle progression of C3H 10T and U87MG cells. Radiat. Res. 156:786–795.
  • Hintzsche, H., Jastrow, C., Kleine-Ostmann, T., et al. (2012). 900 MHz radiation does not induce micronucleus formation in different cell types. Mutagenesis 27:477–483.
  • Hong, M. N., Kim, B. C., Ko, Y. G., et al. (2012). Effects of 837 and 1950 MHz radiofrequency radiation exposure alone or combined on oxidative stress in MCF10A cells. Bioelectromagnetics 33:604–611.
  • Hook, G. J., Spitz, D. R., Sim, J. E., et al. (2004a). Evaluation of parameters of oxidative stress after in vitro exposure to FMCW- and CDMA-modulated radiofrequency radiation fields. Radiat. Res. 162:497–504.
  • Hook, G. J., Zhang, P., Lagroye, I., et al. (2004b). Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation. Radiat. Res. 161:193–200.
  • Höytö, A., Sihvonen, A. P., Alhonen, L., et al. (2006). Modest increase in temperature affects ODC activity in L929 cells: Low-level radiofrequency radiation does not. Radiat. Environ. Biophys. 45:231–235.
  • IARC. (2013). Non-Ionizing Radiation, Part 2: Radiofrequency Electromagnetic Fields. IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 102. Lyon, France: IARC. pp 9–32.
  • Inoue, S., Motoda, H., Koike, Y., et al. (2008). Microwave irradiation induces neurite outgrowth in PC12m3 cells via the p38 mitogen-activated protein kinase pathway. Neurosci. Lett. 432:35–39.
  • Ivaschuk, O. I., Jones, R. A., Ishida-Jones, T., et al. (1997). Exposure of nerve growth factor-treated PC12 rat pheochromocytoma cells to a modulated radiofrequency field at 836.55 MHz: Effects on c-jun and c-fos expression. Bioelectromagnetics 18:223–229.
  • Jin, Z., Zong, C., Jiang, B., et al. (2012). The effect of combined exposure of 900 MHz radiofrequency fields and doxorubicin in HL-60 cells. PLoS One 7:e46102.
  • Joubert, V., Leveque, P., Rametti, A., et al. (2006). Microwave exposure of neuronal cells in vitro: Study of apoptosis. Int. J. Radiat. Biol. 82:267–275.
  • Kang, K. A., Lee, H. C., Lee, J. J., et al. (2014). Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells. J. Radiat. Res. 55:265–276.
  • Kerbacher, J. J., Meltz, M. L., Erwin, D. N. (1990). Influence of radiofrequency radiation on chromosome aberrations in CHO cells and its interaction with DNA-damaging agents. Radiat. Res. 123:311–319.
  • Kesari, K. K., Kumar, S., Behari, J. (2011). Biomarkers inducing changes due to microwave exposure effect on rat brain. XXXth URSI General Assembly and Scientific Symposium, Istanbul.
  • Khalil, A., Alshamali, A. (2010). No significant cytogenetic effects in cultured human lymphocytes exposed to cell phones radiofrequencies (900 MHz and 1800 MHz). Jordan J. Biol. Sci. 3:21–28.
  • Kim, H. N., Han, N. K., Hong, M. N., et al. (2012). Analysis of the cellular stress response in MCF10A cells exposed to combined radio frequency radiation. J. Radiat. Res. 53:176–183.
  • Kim, K. B., Byun, H. O., Han, N. K., et al. (2010). Two-dimensional electrophoretic analysis of radio-frequency radiation-exposed MCF7 breast cancer cells. J. Radiat. Res. 51:205–213.
  • Koyama, S., Isozumi, Y., Suzuki, Y., et al. (2004). Effects of 2.45-GHz electromagnetic fields with a wide range of SARs on micronucleus formation in CHO-K1 cells. ScientificWorldJournal 4:29–40.
  • Koyama, S., Nakahara, T., Wake, K., et al. (2003). Effects of high frequency electromagnetic fields on micronucleus formation in CHO-K1 cells. Mutat. Res. 541:81–89.
  • Kwee, S., Raskmark, P. (1998). Changes in cell proliferation due to environmental non-ionizing radiation: 2. Microwave radiation. Bioelectrochem. Bioenerg. 44:251–255.
  • Lantow, M., Lupke, M., Frahm, J., et al. (2006a). ROS release and Hsp70 expression after exposure to 1,800 MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes. Radiat. Environ. Biophys. 45:55–62.
  • Lantow, M., Viergutz, T., Weiss, D. G., et al. (2006b). Comparative study of cell cycle kinetics and induction of apoptosis or necrosis after exposure of human Mono Mac 6 cells to radiofrequency radiation. Radiat. Res. 166:539–543.
  • Laszlo, A., Moros, E. G., Davidson, T., et al. (2005). The heat-shock factor is not activated in mammalian cells exposed to cellular phone frequency microwaves. Radiat. Res. 164:163–172.
  • Le Quément, C., Nicolas Nicolaz, C., Zhadobov, M., et al. (2012). Whole-genome expression analysis in primary human keratinocyte cell cultures exposed to 60 GHz radiation. Bioelectromagnetics 33:147–158.
  • Le Quément, C., Nicolaz, C. N., Habauzit, D., et al. (2014). Impact of 60-GHz millimeter waves and corresponding heat effect on endoplasmic reticulum stress sensor gene expression. Bioelectromagnetics 35:444–451.
  • Lee, J. S., Huang, T. Q., Kim, T. H., et al. (2006). Radiofrequency radiation does not induce stress response in human T-lymphocytes and rat primary astrocytes. Bioelectromagnetics 27:578–588.
  • Lee, K. Y., Kim, B. C., Han, N. K., et al. (2011). Effects of combined radiofrequency radiation exposure on the cell cycle and its regulatory proteins. Bioelectromagnetics 32:169–178.
  • Lee, S., Johnson, D., Dunbar, K., et al. (2005). 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. FEBS Lett. 579:4829–4836.
  • Leszczynski, D., Joenvaara, S., Reivinen, J., et al. (2002). Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation 70:120–129.
  • Li, H. W., Yao, K., Jin, H. Y., et al. (2007). Proteomic analysis of human lens epithelial cells exposed to microwaves. Jpn. J. Ophthalmol. 51:412–416.
  • Li, L., Bisht, K. S., La Groye, I., et al. (2001). Measurement of DNA damage in mammalian cells exposed in vitro to radiofrequency fields at SARs of 3–5 W/kg. Radiat. Res. 156:328–332.
  • Liu, Y. X., Tai, J. L., Li, G. Q., et al. (2012). Exposure to 1950-MHz TD-SCDMA electromagnetic fields affects the apoptosis of astrocytes via caspase-3-dependent pathway. PLoS One 7:e42332.
  • Lixia, S., Yao, K., Kaijun, W., et al. (2006). Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat. Res. 602:135–142.
  • Lloyd, D. C., Saunders, R. D., Moquet, J. E., et al. (1986). Absence of chromosomal damage in human lymphocytes exposed to microwave radiation with hyperthermia. Bioelectromagnetics 7:235–237.
  • Lu, Y. S., Huang, B. T., Huang, Y. X. (2012). Reactive oxygen species formation and apoptosis in human peripheral blood mononuclear cell induced by 900 MHz mobile phone radiation. Oxid. Med. Cell. Longev. 2012:740280.
  • Luukkonen, J., Hakulinen, P., Maki-Paakkanen, J., et al. (2009). Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation. Mutat. Res. 662:54–58.
  • Luukkonen, J., Juutilainen, J., Naarala, J. (2010). Combined effects of 872 MHz radiofrequency radiation and ferrous chloride on reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells. Bioelectromagnetics 31:417–424.
  • Lyle, D. B., Schechter, P., Adey, W. R., et al. (1983). Suppression of T-lymphocyte cytotoxicity following exposure to sinusoidally amplitude-modulated fields. Bioelectromagnetics 4:281–292.
  • Maes, A., Collier, M., Van Gorp, U., et al. (1997). Cytogenetic effects of 935.2-MHz (GSM) microwaves alone and in combination with mitomycin C. Mutat. Res. 393:151–156.
  • Maes, A., Collier, M., Verschaeve, L. (2000). Cytogenetic investigations on microwaves emitted by a 455.7 MHz car phone. Folia Biol. (Praha)</i> 46:175–180.
  • Maes, A., Collier, M., Verschaeve, L. (2001). Cytogenetic effects of 900 MHz (GSM) microwaves on human lymphocytes. Bioelectromagnetics 22:91–96.
  • Maes, A., Verschaeve, L., Arroyo, A., et al. (1993). In vitro cytogenetic effects of 2450 MHz waves on human peripheral blood lymphocytes. Bioelectromagnetics 14:495–501.
  • Malyapa, R. S., Ahern, E. W., Straube, W. L., et al. (1997a). Measurement of DNA damage after exposure to 2450 MHz electromagnetic radiation. Radiat. Res. 148:608–617.
  • Malyapa, R. S., Ahern, E. W., Straube, W. L., et al. (1997b). Measurement of DNA damage after exposure to electromagnetic radiation in the cellular phone communication frequency band (835.62 and 847.74 MHz). Radiat. Res. 148:618–627.
  • Marinelli, F., La Sala, D., Cicciotti, G., et al. (2004). Exposure to 900 MHz electromagnetic field induces an unbalance between pro-apoptotic and pro-survival signals in T-lymphoblastoid leukemia CCRF-CEM cells. J. Cell Physiol. 198:324–332.
  • Markovà, E., Hillert, L., Malmgren, L., et al. (2005). Microwaves from GSM mobile telephones affect 53BP1 and gamma-H2AX foci in human lymphocytes from hypersensitive and healthy persons. Environ. Health Perspect. 113:1172–1177.
  • Markovà, E., Malmgren, L. O., Belyaev, I. Y. (2010). Microwaves from mobile phones inhibit 53BP1 focus formation in human stem cells more strongly than in differentiated cells: possible mechanistic link to cancer risk. Environ. Health Perspect. 118:394–399
  • McNamee, J. P., Bellier, P. V., Gajda, G. B., et al. (2002). DNA damage in human leukocytes after acute in vitro exposure to a 1.9 GHz pulse-modulated radiofrequency field. Radiat. Res. 158:534–537.
  • Meltz, M. L., Walker, K. A., Erwin, D. N. (1987). Radiofrequency (microwave) radiation exposure of mammalian cells during UV-induced DNA repair synthesis. Radiat. Res. 110:255–266.
  • Merola, P., Marino, C., Lovisolo, G. A., et al. (2006). Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field. Bioelectromagnetics 27:164–171.
  • Miyakoshi, J., Takemasa, K., Takashima, Y., et al. (2005). Effects of exposure to a 1950 MHz radio frequency field on expression of Hsp70 and Hsp27 in human glioma cells. Bioelectromagnetics 26:251–257.
  • Moretti, D., Garenne, A., Haro, E., et al. (2013). In-vitro exposure of neuronal networks to the GSM-1800 signal. Bioelectromagnetics. 34:571–578.
  • Natarajan, M., Vijayalaxmi, Szilagyi, M., et al. (2002). NF-kappaB DNA-binding activity after high peak power pulsed microwave (8.2 GHz) exposure of normal human monocytes. Bioelectromagnetics 23:271–277.
  • National Institute for Occupational Safety and Health (NIOSH). (2012). Radiation dose reconstruction program. Available from: http://www.cdc.gov/niosh/ocas/hanford.html (accessed 20 June 2015).
  • National Toxicology Program (NTP). National Toxicology Program (2013). Available at http://ntp.niehs.nih.gov/ (accessed 20th June 2015).
  • Ni, S., Yu, Y., Zhang, Y., et al. (2013). Study of oxidative stress in human lens epithelial cells exposed to 1.8 GHz radiofrequency fields. PLoS One 8:e72370.
  • Nylund, R., Leszczynski, D. (2004). Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GSM 900 radiation. Proteomics 4:1359–1365.
  • Nylund, R., Leszczynski, D. (2006). Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome- and proteome-dependent. Proteomics 6:4769–4780.
  • O’Connor, R. P., Madison, S. D., Leveque, P., et al. (2010). Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheocromocytoma cells or rat hippocampal neurons. PLoS One. 5:e11828.
  • Ozgur, E., Guler, G., Kismali, G., et al. (2014). Mobile phone radiation alters proliferation of hepatocarcinoma cells. Cell Biochem. Biophys. 70:983–991.
  • Palumbo, R., Brescia, F., Capasso, D., et al. (2008). Exposure to 900 MHz radiofrequency radiation induces caspase 3 activation in proliferating human lymphocytes. Radiat. Res. 170:327–334.
  • Parker, J. E., Kiel, J. L., Winters, W. D. (1988). Effect of radiofrequency radiation on mRNA expression in cultured rodent cells. Physiol. Chem. Phys. Med. NMR 20:129–134.
  • Peinnequin, A., Piriou, A., Mathieu, J., et al. (2000). Non-thermal effects of continuous 2.45 GHz microwaves on Fas-induced apoptosis in human Jurkat T-cell line. Bioelectrochemistry 51:157–161.
  • Penafiel, L. M., Litovitz, T., Krause, D., et al. (1997). Role of modulation on the effect of microwaves on ornithine decarboxylase activity in L929 cells. Bioelectromagnetics 18:132–141.
  • Perrin, A., Freire, M., Bachelet, C., et al. (2010). Evaluation of the co-genotoxic effects of 1800 MHz GSM radiofrequency exposure and a chemical mutagen in cultured human cells. C R Phys. 11:613–621.
  • Phillips, J. L., Ivaschuk, O., Ishida-Jones, T., et al. (1998). DNA damage in Molt-4 T-lymphoblastoid cells exposed to cellular telephone radiofrequency fields in vitro. Bioelectrochem. Bioenerg. 45:103–110.
  • Qutob, S. S., Chauhan, V., Bellier, P. V., et al. (2006). Microarray gene expression profiling of a human glioblastoma cell line exposed in vitro to a 1.9 GHz pulse-modulated radiofrequency field. Radiat. Res. 165:636–644.
  • Remondini, D., Nylund, R., Reivinen, J., et al. (2006). Gene expression changes in human cells after exposure to mobile phone microwaves. Proteomics 6:4745–4754.
  • Sakurai, T., Kiyokawa, T., Narita, E., et al. (2011). Analysis of gene expression in a human-derived glial cell line exposed to 2.45 GHz continuous radiofrequency electromagnetic fields. J. Radiat. Res. 52:185–192.
  • Sambucci, M., Laudisi, F., Nasta, F., et al. (2011). Early life exposure to 2.45GHz WiFi-like signals: Effects on development and maturation of the immune system. Prog. Biophys. Mol. Biol. 107:393–398.
  • Sanchez, S., Haro, E., Ruffie, G., et al. (2007). In vitro study of the stress response of human skin cells to GSM-1800 mobile phone signals compared to UVB radiation and heat shock. Radiat. Res. 167:572–580.
  • Sanchez, S., Milochau, A., Ruffie, G., et al. (2006). Human skin cell stress response to GSM-900 mobile phone signals. In vitro study on isolated primary cells and reconstructed epidermis. FEBS J. 273:5491–5507.
  • Sarimov, R., Malmgren, L. O., Marková, E., et al. (2004). Nonthermal GSM microwaves affect chromatin conformation in human lymphocytes similar to heat shock. IEEE T Plasma Sci. 32:1600–1608.
  • Scarfi, M. R., Fresegna, A. M., Villani, P., et al. (2006). Exposure to radiofrequency radiation (900 MHz, GSM signal) does not affect micronucleus frequency and cell proliferation in human peripheral blood lymphocytes: An interlaboratory study. Radiat. Res. 165:655–663.
  • Schullery, D. S., Ostrowski, J., Denisenko, O. N., et al. (1999). Regulated interaction of protein kinase Cdelta with the heterogeneous nuclear ribonucleoprotein K protein. J. Biol. Chem. 274:15101–15109.
  • Schwarz, C., Kratochvil, E., Pilger, A., et al. (2008). Radiofrequency electromagnetic fields (UMTS, 1,950 MHz) induce genotoxic effects in vitro in human fibroblasts but not in lymphocytes. Int. Arch. Occup. Environ. Health. 81:755–767.
  • Sefidbakht, Y., Moosavi-Movahedi, A. A., Hosseinkhani, S., et al. (2014). Effects of 940 MHz EMF on bioluminescence and oxidative response of stable luciferase producing HEK cells. Photochem. Photobiol. Sci. 13:1082–1092.
  • Sekijima, M., Takeda, H., Yasunaga, K., et al. (2010). 2-GHz band CW and W-CDMA modulated radiofrequency fields have no significant effect on cell proliferation and gene expression profile in human cells. J. Radiat. Res. 51:277–284.
  • Shamis, Y., Croft, R., Taube, A., et al. (2012). Review of the specific effects of microwave radiation on bacterial cells. Appl. Microbiol. Biotechnol. 96:319–325.
  • Shckorbatov, Y. G., Pasiuga, V. N., Goncharuk, E. I., et al. (2010). Effects of differently polarized microwave radiation on the microscopic structure of the nuclei in human fibroblasts. J. Zhejiang Univ. Sci. B. 11:801–805.
  • Shckorbatov, Y. G., Pasiuga, V. N., Kolchigin, N. N., et al. (2009). The influence of differently polarised microwave radiation on chromatin in human cells. Int. J. Radiat. Biol. 85:322–329.
  • Shckorbatov, Y. G., Pasiuga, V. N., Grabina, V. A., et al. (2008). The influence of microwave radiation on the state of chromatin in human cells. arXiv preprint arXiv:0809.0559.
  • Simko, M., Hartwig, C., Lantow, M., et al. (2006). Hsp70 expression and free radical release after exposure to non-thermal radio-frequency electromagnetic fields and ultrafine particles in human Mono Mac 6 cells. Toxicol. Lett. 161:73–82.
  • Song, X. L., Wang, C. H., Hu, H. Y., et al. (2011). Microwave induces apoptosis in A549 human lung carcinoma cell line. Chin. Med. J (Engl)</i>. 124:1193–1198.
  • Speit, G., Schutz, P., Hoffmann, H. (2007). Genotoxic effects of exposure to radiofrequency electromagnetic fields (RF-EMF) in cultured mammalian cells are not independently reproducible. Mutat. Res. 626:42–47.
  • Stagg, R. B., Thomas, W. J., Jones, R. A., et al. (1997). DNA synthesis and cell proliferation in C6 glioma and primary glial cells exposed to a 836.55 MHz modulated radiofrequency field. Bioelectromagnetics 18:230–236.
  • Stronati, L., Testa, A., Moquet, J., et al. (2006). 935 MHz cellular phone radiation. An in vitro study of genotoxicity in human lymphocytes. Int. J. Radiat. Biol. 82:339–346.
  • Stuchly, M. A., Ruddick, J., Villeneuve, D., et al. (1988). Teratological assessment of exposure to time-varying magnetic field. Teratology 38:461–466.
  • Sun, W., Shen, X., Lu, D., et al. (2012). A 1.8-GHz radiofrequency radiation induces EGF receptor clustering and phosphorylation in cultured human amniotic (FL) cells. Int. J. Radiat. Biol. 88:239–244.
  • Surralles, J., Puerto, S., Ramirez, M. J., et al. (1998). Links between chromatin structure, DNA repair and chromosome fragility. Mutat. Res Fund. Mol. M. 404:39–44.
  • Tice, R. R., Hook, G. G., Donner, M., et al. (2002). Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells. Bioelectromagnetics 23:113–126.
  • US Food and Drug Administration (US FDA). (2011). Annual report of National Center for Toxicological Research. Available from: http://www.fda.gov/downloads/AboutFDA/CentersOffices/OC/OfficeofScientificandMedicalPrograms/NCTR/ResearchAccomplishmentsPlans/UCM322194.pdf (accessed 20th June 2015).
  • Valbonesi, P., Franzellitti, S., Piano, A., et al. (2008). Evaluation of HSP70 expression and DNA damage in cells of a human trophoblast cell line exposed to 1.8 GHz amplitude-modulated radiofrequency fields. Radiat. Res. 169:270–279.
  • van Deventer, E., van Rongen, E., Saunders, R. (2011). WHO research agenda for radiofrequency fields. Bioelectromagnetics 32:417–421.
  • van Dorp, R., Marani, E., Boon, M. E. (1998). Cell replication rates and processes concerning antibody production in vitro are not influenced by 2.45-GHz microwaves at physiologically normal temperatures. Methods 15:151–159.
  • Velizarov, S., Raskmark, P., Kwee, S. (1999). The effects of radiofrequency fields on cell proliferation are non-thermal. Bioelectrochem. Bioenerg. 48:177–180.
  • Vijayalaxmi, Leal, B. Z., Meltz, M. L., et al. (2001). Cytogenetic studies in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (835.62 MHz, FDMA). Radiat. Res. 155:113–121.
  • Vijayalaxmi, Reddy, A. B., McKenzie, R. J., et al. (2013). Incidence of micronuclei in human peripheral blood lymphocytes exposed to modulated and unmodulated 2450 MHz radiofrequency fields. Bioelectromagnetics 34:542–548.
  • Wang, J., Koyama, S., Komatsubara, Y., et al. (2006). Effects of a 2450 MHz high-frequency electromagnetic field with a wide range of SARs on the induction of heat-shock proteins in A172 cells. Bioelectromagnetics 27:479–486.
  • Wang, L. F., Li, X., Gao, Y. B., et al. (2014). Activation of VEGF/Flk-1-ERK pathway induced blood–brain barrier injury after microwave exposure. Mol. Neurobiol. 52: 478–491.
  • Whitehead, T. D., Moros, E. G., Brownstein, B. H., et al. (2006). Gene expression does not change significantly in C3H 10T(1/2) cells after exposure to 847.74 CDMA or 835.62 FDMA radiofrequency radiation. Radiat. Res. 165:626–635.
  • Xu, S., Chen, G., Chen, C., et al. (2013). Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions. PLoS One. 8:e54906.
  • Yakymenko, I., Sidorik, E., Kyrylenko, S., et al. (2011). Long-term exposure to microwave radiation provokes cancer growth: Evidences from radars and mobile communication systems. Exp. Oncol. 33:62–70.
  • Yang, L., Hao, D., Wang, M., et al. (2012). Cellular neoplastic transformation induced by 916 MHz microwave radiation. Cell Mol. Neurobiol. 32:1039–1046.
  • Yang, X., He, G., Hao, Y., et al. (2010). The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells. J. Neuroinflammation. 7:54.
  • Yao, K., Wang, K. J., Sun, Z. H., et al. (2004). Low power microwave radiation inhibits the proliferation of rabbit lens epithelial cells by upregulating P27Kip1 expression. Mol. Vis. 10:138–143.
  • Yao, K., Wu, W., Wang, K., et al. (2008). Electromagnetic noise inhibits radiofrequency radiation-induced DNA damage and reactive oxygen species increase in human lens epithelial cells. Mol. Vis. 14:964–969.
  • Yoon, S., Seger, R. (2006). The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44.
  • Yu, Y., Yao, K., Wu, W., et al. (2008). Effects of exposure to 1.8 GHz radiofrequency field on the expression of Hsps and phosphorylation of MAPKs in human lens epithelial cells. Cell Res. 18:1233–1235.
  • Zeng, Q., Chen, G., Weng, Y., et al. (2006). Effects of global system for mobile communications 1800 MHz radiofrequency electromagnetic fields on gene and protein expression in MCF-7 cells. Proteomics 6:4732–4738.
  • Zeni, O., Chiavoni, A. S., Sannino, A., et al. (2003). Lack of genotoxic effects (micronucleus induction) in human lymphocytes exposed in vitro to 900 MHz electromagnetic fields. Radiat. Res. 160:152–158.
  • Zeni, O., Sannino, A., Sarti, M., et al. (2012). Radiofrequency radiation at 1950 MHz (UMTS) does not affect key cellular endpoints in neuron-like PC12 cells. Bioelectromagnetics 33:497–507.
  • Zhao, R., Zhang, S., Xu, Z., et al. (2007a). Studying gene expression profile of rat neuron exposed to 1800MHz radiofrequency electromagnetic fields with cDNA microassay. Toxicology 235:167–175.
  • Zhao, T. Y., Zou, S. P., Knapp, P. E. (2007b). Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci. Lett. 412:34–38.
  • Zhijian, C., Xiaoxue, L., Yezhen, L., et al. (2010). Impact of 1.8-GHz radiofrequency radiation (RFR) on DNA damage and repair induced by doxorubicin in human B-cell lymphoblastoid cells. Mutat. Res. 695:16–21.
  • Zmyslony, M., Politanski, P., Rajkowska, E., et al. (2004). Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions. Bioelectromagnetics 25:324–328.
  • Zotti-Martelli, L., Peccatori, M., Scarpato, R., et al. (2000). Induction of micronuclei in human lymphocytes exposed in vitro to microwave radiation. Mutat. Res. 472:51–58.
  • Zuo, H., Lin, T., Wang, D., et al. (2014). Neural cell apoptosis induced by microwave exposure through mitochondria-dependent caspase-3 pathway. Int. J. Med. Sci. 11:426–435.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.